Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 90(2): e0149223, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38299813

ABSTRACT

The rumen houses a diverse community that plays a major role in the digestion process in ruminants. Anaerobic gut fungi (AGF) are key contributors to plant digestion in the rumen. Here, we present a global amplicon-based survey of the rumen AGF mycobiome by examining 206 samples from 15 animal species, 15 countries, and 6 continents. The rumen AGF mycobiome was highly diverse, with 81 out of 88 currently recognized AGF genera or candidate genera identified. However, only six genera (Neocallimastix, Orpinomyces, Caecomyces, Cyllamyces, NY9, and Piromyces) were present at >4% relative abundance. AGF diversity was higher in members of the families Antilocapridae and Cervidae compared to Bovidae. Community structure analysis identified a pattern of phylosymbiosis, where host family (10% of total variance) and species (13.5%) partially explained the rumen mycobiome composition. As well, diet composition (9%-19%), domestication (11.14%), and biogeography (14.1%) also partially explained AGF community structure; although sampling limitation, geographic range restrictions, and direct association between different factors hindered accurate elucidation of the relative contribution of each factor. Pairwise comparison of rumen and fecal samples obtained from the same subject (n = 13) demonstrated greater diversity and inter-sample variability in rumen versus fecal samples. The genera Neocallimastix and Orpinomyces were present in higher abundance in rumen samples, while Cyllamyces and Caecomyces were enriched in fecal samples. Comparative analysis of global rumen and feces data sets revealed a similar pattern. Our results provide a global view of AGF community in the rumen and identify patterns of AGF variability between rumen and feces in herbivores Gastrointestinal (GI) tract.IMPORTANCERuminants are highly successful and economically important mammalian suborder. Ruminants are herbivores that digest plant material with the aid of microorganisms residing in their GI tract. In ruminants, the rumen compartment represents the most important location where microbially mediated plant digestion occurs, and is known to house a bewildering array of microbial diversity. An important component of the rumen microbiome is the anaerobic gut fungi (AGF), members of the phylum Neocallimastigomycota. So far, studies examining AGF diversity have mostly employed fecal samples, and little is currently known regarding the identity of AGF residing in the rumen compartment, factors that impact the observed patterns of diversity and community structure of AGF in the rumen, and how AGF communities in the rumen compare to AGF communities in feces. Here, we examined the rumen AGF diversity using an amplicon-based survey targeting a wide range of wild and domesticated ruminants (n = 206, 15 different animal species) obtained from 15 different countries. Our results demonstrate that while highly diverse, no new AGF genera were identified in the rumen mycobiome samples examined. Our analysis also indicate that animal host phylogeny, diet, biogeography, and domestication status could play a role in shaping AGF community structure. Finally, we demonstrate that a greater level of diversity and higher inter-sample variability was observed in rumen compared to fecal samples, with two genera (Neocallimastix and Orpinomyces) present in higher abundance in rumen samples, and two others (Cyllamyces and Caecomyces) enriched in fecal samples. Our results provide a global view of the identity, diversity, and community structure of AGF in ruminants, elucidate factors impacting diversity and community structure of the rumen mycobiome, and identify patterns of AGF community variability between the rumen and feces in the herbivorous GI tract.


Subject(s)
Deer , Rumen , Humans , Animals , Anaerobiosis , Rumen/microbiology , Herbivory , Fungi/genetics , Ruminants
2.
Sex Transm Infect ; 99(7): 489-496, 2023 11.
Article in English | MEDLINE | ID: mdl-37258272

ABSTRACT

OBJECTIVE: The vaginal metabolome is a significant factor in the vaginal microenvironment, and data are emerging on its independent role in urogenital health. Condomless vaginal intercourse and personal lubricant use are common practices that may affect the vaginal metabolome. The aim of the present study is to describe the associations between condomless intercourse and lubricant use on the vaginal metabolome. METHODS: This study used archived mid-vaginal swabs from a 10-week observational cohort of reproductive age women who self-collected samples and recorded behavioural diaries daily. Cases and controls were defined as participants who self-reported condomless vaginal intercourse with or without lubricant use, respectively. Samples were drawn prior to and following condomless vaginal intercourse. Twenty-two case participants were race/ethnicity matched to 22 control participants. Mid-vaginal swabs were subjected to 16S rRNA gene amplicon sequencing and untargeted ultrahigh performance liquid chromatography tandem mass spectroscopy metabolomics. Bayesian mixed-effects regression (unadjusted and adjusted for the vaginal microbiota) was used to evaluate differences in metabolite concentration associated with vaginal intercourse and lubricant use. RESULTS: Both condomless penile-vaginal intercourse and lubricant use were independently associated with higher (up to 8.3-fold) concentrations of metabolites indicative of epithelial damage (eg, sarcosine) and many host-produced antioxidants. Lubricant use was significantly associated with increases in lipids related to cellular damage, host-produced sphingolipids (antimicrobials), antioxidants and salicylate, a cooling agent common to lubricants, in a study design which controls for the independent effect of intercourse. Metabolites involved in oxidative stress and salicylate were strongly correlated with several molecular bacterial vaginosis-associated bacteria. CONCLUSIONS: This study provides important foundational data on how condomless vaginal-penile intercourse and lubricant use affect the vaginal metabolome and may affect the protective mechanisms in the vaginal microenvironment.


Subject(s)
Lubricants , Metabolome , Humans , Female , RNA, Ribosomal, 16S , Bayes Theorem , Salicylates
3.
Anal Chem ; 94(9): 3849-3857, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35191682

ABSTRACT

The ability to rapidly and reliably screen for bacterial vaginosis (BV) during pregnancy is of great significance for maternal health and pregnancy outcomes. In this proof-of-concept study, we demonstrated the potential of carbon nanotube field-effect transistors (NTFET) in the rapid diagnostics of BV with the sensing of BV-related factors such as pH and biogenic amines. The fabricated sensors showed good linearity to pH changes with a linear correlation coefficient of 0.99. The pH sensing performance was stable after more than one month of sensor storage. In addition, the sensor was able to classify BV-related biogenic amine-negative/positive samples with machine learning, utilizing different test strategies and algorithms, including linear discriminant analysis (LDA), support vector machine (SVM), and principal component analysis (PCA). The biogenic amine sample status could be well classified using a soft-margin SVM model with a validation accuracy of 87.5%. The accuracy could be further improved using a gold gate electrode for measurement, with accuracy higher than 90% in both LDA and SVM models. We also explored the sensing mechanisms and found that the change in NTFET off current was crucial for classification. The fabricated sensors successfully detect BV-related factors, demonstrating the competitive advantage of NTFET for point-of-care diagnostics of BV.


Subject(s)
Nanotubes, Carbon , Vaginosis, Bacterial , Algorithms , Discriminant Analysis , Female , Humans , Support Vector Machine , Vaginosis, Bacterial/diagnosis , Vaginosis, Bacterial/microbiology
4.
PLoS One ; 16(12): e0260813, 2021.
Article in English | MEDLINE | ID: mdl-34890405

ABSTRACT

Molecular-bacterial vaginosis (BV) is characterized by low levels of vaginal Lactobacillus species and is associated with higher risk of sexually transmitted infections (STI). Perceived psychosocial stress is associated with increased severity and persistence of infections, including STIs. American Indians have the highest rates of stress and high rates of STIs. The prevalence of molecular-BV among American Indian women is unknown. We sought to evaluate measures of psychosocial stress, such as historic loss (a multigenerational factor involving slavery, forced removal from one's land, legally ratified race-based segregation, and contemporary discrimination) and their association with the vaginal microbiota and specific metabolites associated with BV, in 70 Northwestern Plains American Indian women. Demographics, perceived psychosocial stressors, sexual practices, and known BV risk factors were assessed using a modified version of the American Indian Service Utilization, Psychiatric Epidemiology, Risk and Protective Factors Project survey. Self-collected mid-vaginal swabs were profiled for bacterial composition by 16S rRNA gene amplicon sequencing and metabolites quantified by targeted liquid-chromatography mass spectrometry. Sixty-six percent of the participants were classified as having molecular-BV, with the rest being either dominated by L. crispatus (10%) or L. iners (24%). High levels of lifetime trauma were associated with higher odds of having molecular-BV (adjusted Odds Ratio (aOR): 2.5, 95% Credible Interval (CrI): 1.1-5.3). Measures of psychosocial stress, including historic loss and historic loss associated symptoms, were significantly associated with lifestyle and behavioral practices. Higher scores of lifetime trauma were associated with increased concentrations of spermine (aFC: 3.3, 95% CrI: 1.2-9.2). Historic loss associated symptoms and biogenic amines were the major correlates of molecular-BV. Historical loss associated symptoms and lifetime trauma are potentially important underlying factors associated with BV.


Subject(s)
American Indian or Alaska Native/statistics & numerical data , Bacteria/classification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Stress, Psychological/epidemiology , Vaginosis, Bacterial/epidemiology , Adult , Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Female , Humans , Microbiota , Middle Aged , Phylogeny , Prevalence , Stress, Psychological/microbiology , United States/ethnology , Vagina/microbiology , Vaginosis, Bacterial/microbiology , Young Adult
5.
Am J Epidemiol ; 190(11): 2374-2383, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34008013

ABSTRACT

Vaginal microbiota provide the first line of defense against urogenital infections primarily through protective actions of Lactobacillus species Perceived stress increases susceptibility to infection through several mechanisms, including suppression of immune function. We investigated whether stress was associated with deleterious changes to vaginal bacterial composition in a subsample of 572 women in the Longitudinal Study of Vaginal Flora, sampled from 1999 through 2002. Using Cox proportional hazards models, both unadjusted and adjusted for sociodemographic factors and sexual behaviors, we found that participants who exhibited a 5-unit-increase in Cohen's Perceived Stress Scale had greater risk (adjusted hazard ratio (HR) = 1.40, 95% confidence interval (CI): 1.13, 1.74) of developing molecular bacterial vaginosis (BV), a state with low Lactobacillus abundance and diverse anaerobic bacteria. A 5-unit increase in stress score was also associated with greater risks of transitioning from the L. iners-dominated community state type (26% higher) to molecular-BV (adjusted HR = 1.26, 95% CI: 1.01, 1.56) or maintaining molecular-BV from baseline (adjusted HR = 1.23, 95% CI: 1.01, 1.47). Inversely, women with baseline molecular-BV reporting a 5-unit stress increase were less likely to transition to microbiota dominated by L. crispatus, L. gasseri, or L. jensenii (adjusted HR = 0.81, 95% CI: 0.68, 0.99). These findings suggest that psychosocial stress is associated with vaginal microbiota composition, inviting a more mechanistic exploration of the relationship between psychosocial stress and molecular-BV.


Subject(s)
Stress, Psychological/complications , Vagina/microbiology , Vaginosis, Bacterial/etiology , Adult , Female , Humans , Longitudinal Studies , Microbiota , Prospective Studies , Stress, Psychological/microbiology , Vaginosis, Bacterial/psychology
6.
Appl Environ Microbiol ; 87(10)2021 04 27.
Article in English | MEDLINE | ID: mdl-33674429

ABSTRACT

Bacterial vaginosis (BV) is the most common vaginal disorder of reproductive-aged women, yet its etiology remains enigmatic. One clinical symptom of BV, malodor, is linked to the microbial production of biogenic amines (BA). Using targeted liquid chromatography mass spectrometry, we analyzed 149 longitudinally collected vaginal samples to determine the in vivo concentrations of the most common BAs and then assessed their relationship to BV and effect upon the growth kinetics of axenically cultured vaginal Lactobacillus species. Increases in cadaverine, putrescine, and tyramine were associated with greater odds of women transitioning from L. crispatus-dominated vaginal microbiota to microbiota that have a paucity of Lactobacillus spp. and from Nugent scores of 0 to 3 to Nugent scores of 7 to 10, consistent with BV. Exposure to putrescine lengthened the lag time and/or slowed the growth of all vaginal Lactobacillus spp. except L. jensenii 62G. L. iners AB107's lag time was lengthened by cadaverine but reduced in the presence of spermidine and spermine. The growth rate of L. crispatus VPI 3199 was slowed by cadaverine and tyramine, and strain-specific responses to spermine and spermidine were observed. BAs were associated with reduced production of d- and l-lactic acid by vaginal Lactobacillus spp., and this effect was independent of their effect upon Lactobacillus species growth. The exceptions were higher levels of d- and l-lactic acid by two strains of L. crispatus when grown in the presence of spermine. Results of this study provide evidence of a direct impact of common biogenic amines on vaginal Lactobacillus spp.IMPORTANCELactobacillus spp. are credited with providing the primary defense against gynecological conditions, including BV, most notably through the acidification of the vaginal microenvironment, which results from their production of lactic acid. The microbial production of BAs has been hypothesized to play a mechanistic role in diminishing Lactobacillus species-mediated protection, enabling the colonization and outgrowth of diverse anaerobic bacterial species associated with BV. Here, we demonstrate that in vivo increases in the most commonly observed BAs are associated with a loss of Lactobacillus spp. and the development of BV, measured by Nugent score. Further, we show that BAs formed by amino acid decarboxylase enzymes negatively affect the growth of type strains of the most common vaginal Lactobacillus spp. and separately alter their production of lactic acid. These results suggest that BAs destabilize vaginal Lactobacillus spp. and play an important and direct role in diminishing their protection of the vaginal microenvironment.


Subject(s)
Biogenic Amines/biosynthesis , Lactobacillus/metabolism , Vaginosis, Bacterial/microbiology , Female , Humans , Lactic Acid/biosynthesis , Lactobacillus/growth & development , Vagina/microbiology
8.
Sci Rep ; 10(1): 3420, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32098988

ABSTRACT

Chlamydia trachomatis (CT) and Mycoplasma genitalium (MG) are two highly prevalent bacterial sexually transmitted infections (STIs) with a significant rate of co-infection in some populations. Vaginal metabolites are influenced by resident vaginal microbiota, affect susceptibility to sexually transmitted infections (STIs), and may impact local inflammation and patient symptoms. Examining the vaginal metabolome in the context of CT mono (CT+) and CT/MG co-infection (CT+/MG+) may identify biomarkers for infection or provide new insights into disease etiology and pathogenesis. Yet, the vaginal metabolome in the setting of CT infection is understudied and the composition of the vaginal metabolome in CT/MG co-infected women is unknown. Therefore, in this analysis, we used an untargeted metabolomic approach combined with 16S rRNA gene amplicon sequencing to characterize the vaginal microbiota and metabolomes of CT+, CT+/MG+, and uninfected women. We found that CT+ and CT+/MG+ women had distinct vaginal metabolomic profiles as compared to uninfected women both before and after adjustment for the vaginal microbiota. This study provides important foundational data documenting differences in the vaginal metabolome between CT+, CT+/MG+ and uninfected women. These data may guide future mechanistic studies that seek to provide insight into the pathogenesis of CT and CT/MG infections.


Subject(s)
Chlamydia trachomatis/metabolism , Lymphogranuloma Venereum/metabolism , Metabolome , Mycoplasma Infections/metabolism , Mycoplasma genitalium/metabolism , Vagina/metabolism , Vaginosis, Bacterial/metabolism , Adult , Female , Humans , Lymphogranuloma Venereum/pathology , Mycoplasma Infections/pathology , Vagina/microbiology , Vaginosis, Bacterial/microbiology , Vaginosis, Bacterial/pathology
9.
Front Physiol ; 6: 253, 2015.
Article in English | MEDLINE | ID: mdl-26483694

ABSTRACT

Bacterial vaginosis (BV) is the most common vaginal disorder among reproductive age women. One clinical indicator of BV is a "fishy" odor. This odor has been associated with increases in several biogenic amines (BAs) that may serve as important biomarkers. Within the vagina, BA production has been linked to various vaginal taxa, yet their genetic capability to synthesize BAs is unknown. Using a bioinformatics approach, we show that relatively few vaginal taxa are predicted to be capable of producing BAs. Many of these taxa (Dialister, Prevotella, Parvimonas, Megasphaera, Peptostreptococcus, and Veillonella spp.) are more abundant in the vaginal microbial community state type (CST) IV, which is depleted in lactobacilli. Several of the major Lactobacillus species (L. crispatus, L. jensenii, and L. gasseri) were identified as possessing gene sequences for proteins predicted to be capable of putrescine production. Finally, we show in a small cross sectional study of 37 women that the BAs putrescine, cadaverine and tyramine are significantly higher in CST IV over CSTs I and III. These data support the hypothesis that BA production is conducted by few vaginal taxa and may be important to the outgrowth of BV-associated (vaginal dysbiosis) vaginal bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...