Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Rep ; 22(3): 638-652, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29346763

ABSTRACT

The Iroquois homeodomain transcription factor gene IRX3 is expressed in the developing nervous system, limb buds, and heart, and transcript levels specify obesity risk in humans. We now report a functional role for IRX3 in human acute leukemia. Although transcript levels are very low in normal human bone marrow cells, high IRX3 expression is found in ∼30% of patients with acute myeloid leukemia (AML), ∼50% with T-acute lymphoblastic leukemia, and ∼20% with B-acute lymphoblastic leukemia, frequently in association with high-level HOXA gene expression. Expression of IRX3 alone was sufficient to immortalize hematopoietic stem and progenitor cells (HSPCs) in myeloid culture and induce lymphoid leukemias in vivo. IRX3 knockdown induced terminal differentiation of AML cells. Combined IRX3 and Hoxa9 expression in murine HSPCs impeded normal T-progenitor differentiation in lymphoid culture and substantially enhanced the morphologic and phenotypic differentiation block of AML in myeloid leukemia transplantation experiments through suppression of a terminal myelomonocytic program. Likewise, in cases of primary human AML, high IRX3 expression is strongly associated with reduced myelomonocytic differentiation. Thus, tissue-inappropriate derepression of IRX3 contributes significantly to the block in differentiation, which is the pathognomonic feature of human acute leukemias.


Subject(s)
Homeodomain Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Transcription Factors/genetics , Animals , Cell Differentiation , Humans , Leukemia, Myeloid, Acute/pathology , Mice
2.
Best Pract Res Clin Rheumatol ; 31(2): 203-217, 2017 04.
Article in English | MEDLINE | ID: mdl-29224697

ABSTRACT

This review aims to provide a summary of current concepts of ageing in relation to the musculoskeletal system, highlighting recent advances in the understanding of the mechanisms involved in the development of age-related changes in bone, skeletal muscle, chondroid and fibrous tissues. The key components of the musculoskeletal system and their functions are introduced together with a general overview of the molecular hallmarks of ageing. A brief description of the normal architecture of each of these tissue types is followed by a summary of established and developing concepts of mechanisms contributing to the age-related alterations in each. Extensive detailed description of these changes is beyond the scope of this review; instead, we aim to highlight some of the most significant processes and, where possible, the molecular changes underlying these and refer the reader to in-depth, subspecialist reviews of the individual components for further details.


Subject(s)
Aging/physiology , Musculoskeletal Physiological Phenomena , Aged , Aged, 80 and over , Female , Humans , Male
3.
Oncotarget ; 6(28): 25575-87, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26315286

ABSTRACT

Recent discoveries have led to the testing of novel targeted therapies for the treatment of acute myeloid leukemia (AML). To better inform the results of clinical trials, there is a need to identify and systematically assess biomarkers of response and pharmacodynamic markers of successful target engagement. Spleen tyrosine kinase (SYK) is a candidate therapeutic target in AML. Small-molecule inhibitors of SYK induce AML differentiation and impair leukemia progression in preclinical studies. However, tools to predict response to SYK inhibition and to routinely evaluate SYK activation in primary patient samples have been lacking. In this study we quantified phosphorylated SYK (P-SYK) in AML cell lines and establish that increasing levels of baseline P-SYK are correlated with an increasing sensitivity to small-molecule inhibitors targeting SYK. In addition, we found that pharmacological inhibition of SYK activity extinguishes P-SYK expression as detected by an immunohistochemical (IHC) test. Quantitative analysis of P-SYK expression by the IHC test in a series of 70 primary bone marrow biopsy specimens revealed a spectrum of P-SYK expression across AML cases and that high P-SYK expression is associated with unfavourable outcome independent of age, cytogenetics, and white blood cell count. This study thus establishes P-SYK as a critical biomarker in AML that identifies tumors sensitive to SYK inhibition, identifies an at-risk patient population, and allows for the monitoring of target inhibition during treatment.


Subject(s)
Biomarkers, Tumor/metabolism , Bone Marrow/enzymology , Intracellular Signaling Peptides and Proteins/metabolism , Leukemia, Myeloid, Acute/enzymology , Protein-Tyrosine Kinases/metabolism , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/genetics , Bone Marrow/drug effects , Bone Marrow/pathology , Bone Marrow Examination , Dose-Response Relationship, Drug , Enzyme Activation , HL-60 Cells , Humans , Immunohistochemistry , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Molecular Targeted Therapy , Phosphorylation , Predictive Value of Tests , Prognosis , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Risk Factors , Signal Transduction , Syk Kinase , U937 Cells , Up-Regulation
4.
Exp Hematol ; 39(11): 1090-100, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21782766

ABSTRACT

OBJECTIVE: The balance between proliferation and differentiation during hematopoietic development in the embryo is a complex process, the detailed molecular mechanisms of which remain to be fully characterized. The transcription factor Mxd4, a member of the Myc-Max-Mad network, was identified in a global gene expression profiling screen as being tightly regulated at the onset of hematopoietic lineage specification upon in vitro differentiation of mouse embryonic stem cells. Our study investigated the Mxd4 expression pattern at the onset of hematopoiesis and the biological relevance of its sharp and transient downregulation. MATERIALS AND METHODS: To study the expression pattern and role of Mxd4 at the onset of hematopoiesis, the in vitro differentiation of embryonic stem cells was used as a model system. Gain of function assays were performed using a doxycycline-inducible embryonic stem cell system. RESULTS: We show here that Mxd4 expression is transiently downregulated at an early stage of commitment to the hematopoietic lineage. Enforced expression of Mxd4 at this period of differentiation results in a defect in hematopoietic progenitor development, with impaired development of both primitive and definitive blood lineages. This effect is due to a severe decrease in cell proliferation, with an increased frequency of cells in the G(0)/G(1) phase of the cell cycle, alongside a reduced frequency of cells in the S phase. CONCLUSIONS: Together our results indicate that during embryonic hematopoietic differentiation Mxd4 is an important player in the regulation of blood progenitor proliferation, and suggest that downregulation of its expression might be required for a proliferative burst preceding lineage specification.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Cell Proliferation , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Hematopoietic System/growth & development , Repressor Proteins/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Lineage , Gene Expression Regulation/physiology , Mice , Repressor Proteins/genetics , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL