Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Brain Behav Immun ; 117: 493-509, 2024 03.
Article in English | MEDLINE | ID: mdl-38307446

ABSTRACT

In the last years, the hypothesis that elevated levels of proinflammatory cytokines contribute to the pathogenesis of neurodevelopmental diseases has gained popularity. IL-1 is one of the main cytokines found to be elevated in Autism spectrum disorder (ASD), a complex neurodevelopmental condition characterized by defects in social communication and cognitive impairments. In this study, we demonstrate that mice lacking IL-1 signaling display autistic-like defects associated with an excessive number of synapses. We also show that microglia lacking IL-1 signaling at early neurodevelopmental stages are unable to properly perform the process of synapse engulfment and display excessive activation of mammalian target of rapamycin (mTOR) signaling. Notably, even the acute inhibition of IL-1R1 by IL-1Ra is sufficient to enhance mTOR signaling and reduce synaptosome phagocytosis in WT microglia. Finally, we demonstrate that rapamycin treatment rescues the defects in IL-1R deficient mice. These data unveil an exclusive role of microglial IL-1 in synapse refinement via mTOR signaling and indicate a novel mechanism possibly involved in neurodevelopmental disorders associated with defects in the IL-1 pathway.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Mice , Microglia , TOR Serine-Threonine Kinases , Cytokines , Sirolimus/pharmacology , Synapses , Interleukin-1 , Mammals
3.
Sci Rep ; 13(1): 755, 2023 01 14.
Article in English | MEDLINE | ID: mdl-36641518

ABSTRACT

Mice with deletion of the FMR1 gene show episodic memory impairments and exhibit dendritic spines and synaptic plasticity defects prevalently identified in non-training conditions. Based on evidence that synaptic changes associated with normal or abnormal memory emerge when mice are cognitively challenged, here we examine whether, and how, fragile entorhinal and hippocampal synapses are remodeled when mice succeed or fail to learn. We trained Fmr1 knockout (KO) and wild-type C57BL/6J (WT) mice in the novel object recognition (NOR) paradigm with 1 h or 24 h training-to-test intervals and then assessed whether varying the time between the presentation of similar and different objects modulates NOR performance and plasticity along the entorhinal cortex-hippocampus axis. At the 1 h-interval, KO mice failed to discriminate the novel object, showed a collapse of spines in the lateral entorhinal cortex (LEC), and of long-term potentiation (LTP) in the lateral perforant path (LPP), but a normal increase in hippocampal spines. At the 24 h, they exhibited intact NOR performance, typical LEC and hippocampal spines, and exaggerated LPP-LTP. Our findings reveal that the inability of mice to detect object novelty primarily stands in their impediment to elaborate, and convey to the hippocampus, sensory/perceptive object representations.


Subject(s)
Hippocampus , Neuronal Plasticity , Animals , Mice , Mice, Knockout , Mice, Inbred C57BL , Hippocampus/metabolism , Neuronal Plasticity/genetics , Long-Term Potentiation/genetics , Synapses/metabolism , Fragile X Mental Retardation Protein/genetics
4.
Int J Mol Sci ; 23(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36233159

ABSTRACT

FMRP is an RNA-binding protein that represses the translation of specific mRNAs. In neurons, its depletion determines the exaggerated translation of mRNAs leading to dendritic and axonal aberrant development, two peculiar features of Fragile X syndrome patients. However, how FMRP binds to translational machinery to regulate the translation of its mRNA targets is not yet fully understood. Here, we show that FMRP localizes on translational machinery by interacting with the ribosomal binding protein, Receptor for Activated C Kinase 1 (RACK1). The binding of FMRP to RACK1 removes the translational repressive activity of FMRP and promotes the translation of PSD-95 mRNA, one specific target of FMRP. This binding also results in a reduction in the level of FMRP phosphorylation. We also find that the morphological abnormalities induced by Fmr1 siRNA in cortical neurons are rescued by the overexpression of a mutant form of RACK1 that cannot bind ribosomes. Thus, these results provide a new mechanism underlying FMRP activity that contributes to altered development in FXS. Moreover, these data confirm the role of ribosomal RACK1 as a ribosomal scaffold for RNA binding proteins.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Receptors for Activated C Kinase , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Humans , Neoplasm Proteins/metabolism , Neuronal Plasticity , RNA, Messenger/metabolism , RNA, Small Interfering , Receptors for Activated C Kinase/genetics , Receptors for Activated C Kinase/metabolism , Ribosomal Proteins/metabolism , Ribosomes/metabolism
5.
EMBO J ; 41(23): e111192, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36314682

ABSTRACT

Intracerebral hemorrhages are recognized risk factors for neurodevelopmental disorders and represent early biomarkers for cognitive dysfunction and mental disability, but the pathways leading to their occurrence are not well defined. We report that a single intrauterine exposure of the immunostimulant Poly I:C to pregnant mice at gestational day 9, which models a prenatal viral infection and the consequent maternal immune activation, induces the defective formation of brain vessels and causes intracerebral hemorrhagic events, specifically in male offspring. We demonstrate that maternal immune activation promotes the production of the TGF-ß1 active form and the consequent enhancement of pSMAD1-5 in males' brain endothelial cells. TGF-ß1, in combination with IL-1ß, reduces the endothelial expression of CD146 and claudin-5, alters the endothelium-pericyte interplay resulting in low pericyte coverage, and increases hemorrhagic events in the adult offspring. By showing that exposure to Poly I:C at the beginning of fetal cerebral angiogenesis results in sex-specific alterations of brain vessels, we provide a mechanistic framework for the association between intragravidic infections and anomalies of the neural vasculature, which may contribute to neuropsychiatric disorders.


Subject(s)
Cerebral Hemorrhage , Prenatal Exposure Delayed Effects , Animals , Female , Male , Mice , Pregnancy , Behavior, Animal , Brain/blood supply , Brain/pathology , Cerebral Hemorrhage/pathology , Disease Models, Animal , Endothelial Cells/metabolism , Poly I-C/adverse effects , Prenatal Exposure Delayed Effects/pathology , Transforming Growth Factor beta1/metabolism
6.
Front Mol Biosci ; 8: 699613, 2021.
Article in English | MEDLINE | ID: mdl-34760921

ABSTRACT

Fragile X mental retardation protein (FMRP) is an RNA binding protein (RBP) whose absence is essentially associated to Fragile X Syndrome (FXS). As an RNA Binding Protein (RBP), FMRP is able to bind and recognize different RNA structures and the control of specific mRNAs is important for neuronal synaptic plasticity. Perturbations of this pathway have been associated with the autistic spectrum. One of the FMRP partners is the APP mRNA, the main protagonist of Alzheimer's disease (AD), thereby regulating its protein level and metabolism. Therefore FMRP is associated to two neurodevelopmental and age-related degenerative conditions, respectively FXS and AD. Although these pathologies are characterized by different features, they have been reported to share a number of common molecular and cellular players. The aim of this review is to describe the double-edged sword of FMRP in autism and AD, possibly allowing the elucidation of key shared underlying mechanisms and neuronal circuits. As an RBP, FMRP is able to regulate APP expression promoting the production of amyloid ß fragments. Indeed, FXS patients show an increase of amyloid ß load, typical of other neurological disorders, such as AD, Down syndrome, Parkinson's Disease, etc. Beyond APP dysmetabolism, the two neurodegenerative conditions share molecular targets, brain circuits and related cognitive deficits. In this review, we will point out the potential common neuropathological pattern which needs to be addressed and we will hopefully contribute to clarifying the complex phenotype of these two neurorological disorders, in order to pave the way for a novel, common disease-modifying therapy.

7.
Science ; 374(6566): 439-448, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34672740

ABSTRACT

Up to 40% of patients with inflammatory bowel disease present with psychosocial disturbances. We previously identified a gut vascular barrier that controls the dissemination of bacteria from the intestine to the liver. Here, we describe a vascular barrier in the brain choroid plexus (PVB) that is modulated in response to intestinal inflammation through bacteria-derived lipopolysaccharide. The inflammatory response induces PVB closure after gut vascular barrier opening by the up-regulation of the wingless-type, catenin-beta 1 (Wnt/ß-catenin) signaling pathway, rendering it inaccessible to large molecules. In a model of genetically driven closure of choroid plexus endothelial cells, we observed a deficit in short-term memory and anxiety-like behavior, suggesting that PVB closure may correlate with mental deficits. Inflammatory bowel disease­related mental symptoms may thus be the consequence of a deregulated gut­brain vascular axis.


Subject(s)
Choroid Plexus/blood supply , Choroid Plexus/physiopathology , Colitis, Ulcerative/physiopathology , Colitis, Ulcerative/psychology , Intestines/physiopathology , Memory Disorders/physiopathology , Memory, Short-Term , Animals , Anxiety/etiology , Anxiety/physiopathology , Blood-Brain Barrier/pathology , Colitis, Ulcerative/complications , Dextrans , Disease Models, Animal , Humans , Lipopolysaccharides , Memory Disorders/etiology , Mice , Mice, Inbred C57BL , Microglia/pathology , Signal Transduction , Tight Junctions/pathology , Wnt Proteins/metabolism , beta Catenin/metabolism
8.
Transl Psychiatry ; 11(1): 112, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547274

ABSTRACT

In fragile X syndrome (FXS) the lack of the fragile X mental retardation protein (FMRP) leads to exacerbated signaling through the metabotropic glutamate receptors 5 (mGlu5Rs). The adenosine A2A receptors (A2ARs), modulators of neuronal damage, could play a role in FXS. A synaptic colocalization and a strong permissive interaction between A2A and mGlu5 receptors in the hippocampus have been previously reported, suggesting that blocking A2ARs might normalize the mGlu5R-mediated effects of FXS. To study the cross-talk between A2A and mGlu5 receptors in the absence of FMRP, we performed extracellular electrophysiology experiments in hippocampal slices of Fmr1 KO mouse. The depression of field excitatory postsynaptic potential (fEPSPs) slope induced by the mGlu5R agonist CHPG was completely blocked by the A2AR antagonist ZM241385 and strongly potentiated by the A2AR agonist CGS21680, suggesting that the functional synergistic coupling between the two receptors could be increased in FXS. To verify if chronic A2AR blockade could reverse the FXS phenotypes, we treated the Fmr1 KO mice with istradefylline, an A2AR antagonist. We found that hippocampal DHPG-induced long-term depression (LTD), which is abnormally increased in FXS mice, was restored to the WT level. Furthermore, istradefylline corrected aberrant dendritic spine density, specific behavioral alterations, and overactive mTOR, TrkB, and STEP signaling in Fmr1 KO mice. Finally, we identified A2AR mRNA as a target of FMRP. Our results show that the pharmacological blockade of A2ARs partially restores some of the phenotypes of Fmr1 KO mice, both by reducing mGlu5R functioning and by acting on other A2AR-related downstream targets.


Subject(s)
Fragile X Syndrome , Receptor, Adenosine A2A , Adenosine , Animals , Cognition , Disease Models, Animal , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/drug therapy , Fragile X Syndrome/genetics , Hippocampus/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor, Adenosine A2A/genetics
9.
Brain Commun ; 2(1): fcaa039, 2020.
Article in English | MEDLINE | ID: mdl-32954296

ABSTRACT

Clinical and neuropathological studies have shown that tau pathology better correlates with the severity of dementia than amyloid plaque burden, making tau an attractive target for the cure of Alzheimer's disease. We have explored whether passive immunization with the 12A12 monoclonal antibody (26-36aa of tau protein) could improve the Alzheimer's disease phenotype of two well-established mouse models, Tg2576 and 3xTg mice. 12A12 is a cleavage-specific monoclonal antibody which selectively binds the pathologically relevant neurotoxic NH226-230 fragment (i.e. NH2htau) of tau protein without cross-reacting with its full-length physiological form(s). We found out that intravenous administration of 12A12 monoclonal antibody into symptomatic (6 months old) animals: (i) reaches the hippocampus in its biologically active (antigen-binding competent) form and successfully neutralizes its target; (ii) reduces both pathological tau and amyloid precursor protein/amyloidß metabolisms involved in early disease-associated synaptic deterioration; (iii) improves episodic-like type of learning/memory skills in hippocampal-based novel object recognition and object place recognition behavioural tasks; (iv) restores the specific up-regulation of the activity-regulated cytoskeleton-associated protein involved in consolidation of experience-dependent synaptic plasticity; (v) relieves the loss of dendritic spine connectivity in pyramidal hippocampal CA1 neurons; (vi) rescues the Alzheimer's disease-related electrophysiological deficits in hippocampal long-term potentiation at the CA3-CA1 synapses; and (vii) mitigates the neuroinflammatory response (reactive gliosis). These findings indicate that the 20-22 kDa NH2-terminal tau fragment is crucial target for Alzheimer's disease therapy and prospect immunotherapy with 12A12 monoclonal antibody as safe (normal tau-preserving), beneficial approach in contrasting the early Amyloidß-dependent and independent neuropathological and cognitive alterations in affected subjects.

10.
Transl Psychiatry ; 10(1): 27, 2020 01 27.
Article in English | MEDLINE | ID: mdl-32066681

ABSTRACT

Recent evidence indicates that reactivated memories are malleable and can integrate new information upon their reactivation. We injected rats with oxytocin to investigate whether the delivery of a drug which dampens anxiety and fear before the reactivation of trauma memory decreases the emotional load of the original representation and durably alleviates PTSD-like symptoms. Rats exposed to the single prolonged stress (SPS) model of PTSD were classified 15 and 17 days later as either resilient or vulnerable to trauma on the basis of their anxiety and arousal scores. Following 2 other weeks, they received an intracerebral infusion of oxytocin (0.1 µg/1 µL) or saline 40 min before their trauma memory was reactivated by exposure to SPS reminders. PTSD-like symptoms and reactivity to PTSD-related cues were examined 3-14 days after oxytocin treatment. Results showed that vulnerable rats treated with saline exhibited a robust PTSD syndrome including increased anxiety and decreased arousal, as well as intense fear reactions to SPS sensory and contextual cues. Exposure to a combination of those cues resulted in c-fos hypo-activation and dendritic arbor retraction in prefrontal cortex and amygdala neurons, relative to resilient rats. Remarkably, 83% of vulnerable rats subjected to oxytocin-based emotional remodeling exhibited a resilient phenotype, and SPS-induced morphological alterations in prelimbic cortex and basolateral amygdala were eliminated. Our findings emphasize the translational potential of the present oxytocin-based emotional remodeling protocol which, when administered even long after the trauma, produces deep re-processing of traumatic memories and durable attenuation of the PTSD symptomatology.


Subject(s)
Oxytocin , Stress Disorders, Post-Traumatic , Animals , Disease Models, Animal , Fear , Rats , Rats, Sprague-Dawley , Stress Disorders, Post-Traumatic/drug therapy
11.
Neurobiol Dis ; 139: 104787, 2020 06.
Article in English | MEDLINE | ID: mdl-32032729

ABSTRACT

TG2576 mice show highest levels of the full length mutant Swedish Human Amyloid Precursor Protein (APPKM670/671LN) during prodromal and early sympotomatic stages. Interestingly, this occurs in association with the unbalanced expression of two of its RNA Binding proteins (RBPs) opposite regulators, the Fragile-X Mental Retardation Protein (FMRP) and the heteronuclear Ribonucleoprotein C (hnRNP C). Whether an augmentation in overall translational efficiency also contributes to the elevation of APP levels at those early developmental stages is currently unknown. We investigated this possibility by performing a longitudinal polyribosome profiling analysis of APP mRNA and protein in total hippocampal extracts from Tg2576 mice. Results showed that protein polysomal signals were exclusively detected in pre-symptomatic (1 months) and early symptomatic (3 months) mutant mice. Differently, hAPP mRNA polysomal signals were detected at any age, but a peak of expression was found when mice were 3-month old. Consistent with an early but transient rise of translational efficiency, the phosphorylated form of the initial translation factor eIF2α (p-eIF2α) was reduced at pre-symptomatic and early symptomatic stages, whereas it was increased at the fully symptomatic stage. Pharmacological downregulation of overall translation in early symptomatic mutants was then found to reduce hippocampal levels of full length APP, Aßspecies, BACE1 and Caspase-3, to rescue predominant LTD at hippocampal synapses, to revert dendritic spine loss and memory alterations, and to reinstate memory-induced c-fosactivation. Altogether, our findings demonstrate that overall translation is upregulated in prodromal and early symptomatic Tg2576 mice, and that restoring proper translational control at the onset of AD-like symptoms blocks the emergence of the AD-like phenotype.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Prodromal Symptoms , Up-Regulation , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Animals , Disease Models, Animal , Eukaryotic Initiation Factor-2/metabolism , Female , Fragile X Mental Retardation Protein , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Phosphorylation , RNA, Messenger/metabolism , Synapses/metabolism
12.
Mol Neurobiol ; 57(1): 586, 2020 01.
Article in English | MEDLINE | ID: mdl-31823196

ABSTRACT

The original version of this article unfortunately contained a mistake in Figure 3. The drawing superimposed on photomicrographs to identify the region of Dorsal raphè Nuclei was inappropriately positioned. The corrected figure is given below.

13.
Mol Neurobiol ; 56(12): 8513-8523, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31267371

ABSTRACT

The view that the neocortex is remotely recruited for long-term episodic memory recall is challenged by data showing that an intense transcriptional and synaptic activity is detected in this region immediately after training. By measuring markers of synaptic activity at recent and remote time points from contextual fear conditioning (CFC), we could show that pre-synaptic changes are selectively detected 1 day post-training when the memory is anchored to the training context. Differently, pre- and post-synaptic changes are detected 14 days post-training when the memory generalizes to other contexts. Confirming that coincident pre- and post-synaptic remodelling mediates the disengagement of memory from its original context, DREADDs-mediated enhancement of cortical neuron activity during CFC training anticipates expression of a schematic memory and observation of bilateral synaptic remodelling. Together, our data show that the plastic properties of cortical synapses vary over time and specialise in relation to the quality of memory.


Subject(s)
Gyrus Cinguli/physiology , Memory, Episodic , Synapses/physiology , Action Potentials/physiology , Animals , Dendritic Spines/physiology , Drug Design , Excitatory Postsynaptic Potentials/physiology , Freezing Reaction, Cataleptic/physiology , Male , Mental Recall/physiology , Mice, Inbred C57BL , Neurons/physiology
14.
Proc Natl Acad Sci U S A ; 115(15): E3388-E3397, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29581312

ABSTRACT

S-nitrosylation, a prototypic redox-based posttranslational modification, is frequently dysregulated in disease. S-nitrosoglutathione reductase (GSNOR) regulates protein S-nitrosylation by functioning as a protein denitrosylase. Deficiency of GSNOR results in tumorigenesis and disrupts cellular homeostasis broadly, including metabolic, cardiovascular, and immune function. Here, we demonstrate that GSNOR expression decreases in primary cells undergoing senescence, as well as in mice and humans during their life span. In stark contrast, exceptionally long-lived individuals maintain GSNOR levels. We also show that GSNOR deficiency promotes mitochondrial nitrosative stress, including excessive S-nitrosylation of Drp1 and Parkin, thereby impairing mitochondrial dynamics and mitophagy. Our findings implicate GSNOR in mammalian longevity, suggest a molecular link between protein S-nitrosylation and mitochondria quality control in aging, and provide a redox-based perspective on aging with direct therapeutic implications.


Subject(s)
Aging/metabolism , Mammals/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Mitophagy , Aging/genetics , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Animals , Cellular Senescence , Humans , Mammals/genetics , Mice , Mice, Inbred C57BL , Mitochondria/genetics , Nitric Oxide/metabolism , Nitrosative Stress , Protein Processing, Post-Translational , S-Nitrosothiols/metabolism
15.
Mol Neurobiol ; 55(9): 7401-7412, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29417477

ABSTRACT

Recent studies show that microRNA-34 (miR-34) family is critical in the regulation of stress response also suggesting that it may contribute to the individual responsiveness to stress. We have recently demonstrated that mice carrying a genetic deletion of all miR-34 isoforms (triple knockout, TKO) lack the stress-induced serotonin (5-HT) and GABA release in the medial prefrontal cortex (mpFC) and basolateral amygdala (BLA), respectively. Here, we evaluated if the absence of miR-34 was also able to modify the stress-coping strategy in the forced swimming test. We found that the blunted neurochemical response to stress was associated with lower levels of immobility (index of active coping behavior) in TKO compared to WT mice. Interestingly, among the brain regions mostly involved in the stress-related behaviors, the miR-34 displayed the strongest expression in the dorsal raphe nuclei (DRN) of wild-type (WT) mice. In the DRN, the corticotropin-releasing factor receptors (CRFR) 1 and 2, contribute to determine the stress-coping style and the CRFR1 is a target of miR-34. Thus, we hypothesized that the miR-34-dependent modulation of CRFR1 expression may be involved in the DRN regulation of stress-coping strategies. In line with this hypothesis, we found increased CRFR1 levels in the DNR of TKO compared to WT mice. Moreover, infusion of CRFR1 antagonist in the DRN of TKO mice reverted their behavioral and neurochemical phenotype. We propose that miR-34 modulate the mpFC 5-HT/BLA GABA response to stress acting on CRFR1 in the DRN and that this mechanism could contribute to determine individual stress-coping strategy.


Subject(s)
Amygdala/metabolism , Behavior, Animal , MicroRNAs/metabolism , Prefrontal Cortex/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism , Serotonin/metabolism , Stress, Psychological/genetics , gamma-Aminobutyric Acid/metabolism , Acenaphthenes/pharmacology , Amygdala/drug effects , Animals , Behavior, Animal/drug effects , Corticotropin-Releasing Hormone/pharmacology , Dorsal Raphe Nucleus/drug effects , Dorsal Raphe Nucleus/metabolism , Gene Deletion , Immobilization , Male , Mice , Mice, Knockout , MicroRNAs/genetics , Motor Activity/drug effects , Swimming
16.
Front Cell Neurosci ; 12: 487, 2018.
Article in English | MEDLINE | ID: mdl-30618634

ABSTRACT

Basal forebrain cholinergic neurons (BFCNs) depend on nerve growth factor (NGF) for their survival/differentiation and innervate cortical and hippocampal regions involved in memory/learning processes. Cholinergic hypofunction and/or degeneration early occurs at prodromal stages of Alzheimer's disease (AD) neuropathology in correlation with synaptic damages, cognitive decline and behavioral disability. Alteration(s) in ubiquitin-proteasome system (UPS) is also a pivotal AD hallmark but whether it plays a causative, or only a secondary role, in early synaptic failure associated with disease onset remains unclear. We previously reported that impairment of NGF/TrkA signaling pathway in cholinergic-enriched septo-hippocampal primary neurons triggers "dying-back" degenerative processes which occur prior to cell death in concomitance with loss of specific vesicle trafficking proteins, including synapsin I, SNAP-25 and α-synuclein, and with deficit in presynaptic excitatory neurotransmission. Here, we show that in this in vitro neuronal model: (i) UPS stimulation early occurs following neurotrophin starvation (-1 h up to -6 h); (ii) NGF controls the steady-state levels of these three presynaptic proteins by acting on coordinate mechanism(s) of dynamic ubiquitin-C-terminal hydrolase 1 (UCHL-1)-dependent (mono)ubiquitin turnover and UPS-mediated protein degradation. Importantly, changes in miniature excitatory post-synaptic currents (mEPSCs) frequency detected in -6 h NGF-deprived primary neurons are strongly reverted by acute inhibition of UPS and UCHL-1, indicating that NGF tightly controls in vitro the presynaptic efficacy via ubiquitination-mediated pathway(s). Finally, changes in synaptic ubiquitin and selective reduction of presynaptic markers are also found in vivo in cholinergic nerve terminals from hippocampi of transgenic Tg2576 AD mice, even from presymptomatic stages of neuropathology (1-month-old). By demonstrating a crucial role of UPS in the dysregulation of NGF/TrkA signaling on properties of cholinergic synapses, these findings from two well-established cellular and animal AD models provide novel therapeutic targets to contrast early cognitive and synaptic dysfunction associated to selective degeneration of BFCNs occurring in incipient early/middle-stage of disease.

17.
Oncotarget ; 8(39): 64745-64778, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-29029390

ABSTRACT

The largest part of tau secreted from AD nerve terminals and released in cerebral spinal fluid (CSF) is C-terminally truncated, soluble and unaggregated supporting potential extracellular role(s) of NH2 -derived fragments of protein on synaptic dysfunction underlying neurodegenerative tauopathies, including Alzheimer's disease (AD). Here we show that sub-toxic doses of extracellular-applied human NH2 tau 26-44 (aka NH 2 htau) -which is the minimal active moiety of neurotoxic 20-22kDa peptide accumulating in vivo at AD synapses and secreted into parenchyma- acutely provokes presynaptic deficit in K+ -evoked glutamate release on hippocampal synaptosomes along with alteration in local Ca2+ dynamics. Neuritic dystrophy, microtubules breakdown, deregulation in presynaptic proteins and loss of mitochondria located at nerve endings are detected in hippocampal cultures only after prolonged exposure to NH 2 htau. The specificity of these biological effects is supported by the lack of any significant change, either on neuronal activity or on cellular integrity, shown by administration of its reverse sequence counterpart which behaves as an inactive control, likely due to a poor conformational flexibility which makes it unable to dynamically perturb biomembrane-like environments. Our results demonstrate that one of the AD-relevant, soluble and secreted N-terminally truncated tau forms can early contribute to pathology outside of neurons causing alterations in synaptic activity at presynaptic level, independently of overt neurodegeneration.

18.
Nat Commun ; 8(1): 293, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28819097

ABSTRACT

The brain cytoplasmic (BC1) RNA is a non-coding RNA (ncRNA) involved in neuronal translational control. Absence of BC1 is associated with altered glutamatergic transmission and maladaptive behavior. Here, we show that pyramidal neurons in the barrel cortex of BC1 knock out (KO) mice display larger excitatory postsynaptic currents and increased spontaneous activity in vivo. Furthermore, BC1 KO mice have enlarged spine heads and postsynaptic densities and increased synaptic levels of glutamate receptors and PSD-95. Of note, BC1 KO mice show aberrant structural plasticity in response to whisker deprivation, impaired texture novel object recognition and altered social behavior. Thus, our study highlights a role for BC1 RNA in experience-dependent plasticity and learning in the mammalian adult neocortex, and provides insight into the function of brain ncRNAs regulating synaptic transmission, plasticity and behavior, with potential relevance in the context of intellectual disabilities and psychiatric disorders.Brain cytoplasmic (BC1) RNA is a non-coding RNA that has been implicated in translational regulation, seizure, and anxiety. Here, the authors show that in the cortex, BC1 RNA is required for sensory deprivation-induced structural plasticity of dendritic spines, as well as for correct sensory learning and social behaviors.


Subject(s)
Learning/physiology , Neocortex/physiology , Neuronal Plasticity/physiology , Pyramidal Cells/physiology , RNA, Small Cytoplasmic/genetics , Animals , Base Sequence , Cells, Cultured , Dendritic Spines/metabolism , Dendritic Spines/physiology , Excitatory Postsynaptic Potentials/genetics , Excitatory Postsynaptic Potentials/physiology , In Situ Hybridization, Fluorescence , Male , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron , Neocortex/cytology , Neocortex/metabolism , Neuronal Plasticity/genetics , Pyramidal Cells/metabolism , Pyramidal Cells/ultrastructure , Sensory Deprivation/physiology , Sequence Homology, Nucleic Acid , Social Behavior , Synaptic Transmission/genetics , Synaptic Transmission/physiology , Vibrissae/metabolism , Vibrissae/physiology
19.
J Exp Clin Cancer Res ; 35(1): 146, 2016 09 17.
Article in English | MEDLINE | ID: mdl-27639846

ABSTRACT

BACKGROUND: We have previously shown that the eukaryotic elongation factor subunit 1B gamma (eEF1Bγ) interacts with the RNA polymerase II (pol II) alpha-like subunit "C" (POLR2C), alone or complexed, in the pol II enzyme. Moreover, we demonstrated that eEF1Bγ binds the promoter region and the 3' UTR mRNA of the vimentin gene. These events contribute to localize the vimentin transcript and consequentially its translation, promoting a proper mitochondrial network. METHODS: With the intent of identifying additional transcripts that complex with the eEF1Bγ protein, we performed a series of ribonucleoprotein immunoprecipitation (RIP) assays using a mitochondria-enriched heavy membrane (HM) fraction. RESULTS: Among the eEF1Bγ complexed transcripts, we found the mRNA encoding the Che-1/AATF multifunctional protein. As reported by other research groups, we found the tumor suppressor p53 transcript complexed with the eEF1Bγ protein. Here, we show for the first time that eEF1Bγ binds not only Che-1 and p53 transcripts but also their promoters. Remarkably, we demonstrate that both the Che-1 transcript and its translated product localize also to the mitochondria and that eEF1Bγ depletion strongly perturbs the mitochondrial network and the correct localization of Che-1. In a doxorubicin (Dox)-induced DNA damage assay we show that eEF1Bγ depletion significantly decreases p53 protein accumulation and slightly impacts on Che-1 accumulation. Importantly, Che-1 and p53 proteins are components of the DNA damage response machinery that maintains genome integrity and prevents tumorigenesis. CONCLUSIONS: Our data support the notion that eEF1Bγ, besides its canonical role in translation, is an RNA-binding protein and a key player in cellular stress responses. We suggest for eEF1Bγ a role as primordial transcription/translation factor that links fundamental steps from transcription control to local translation.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Neoplasms/metabolism , Peptide Elongation Factor 1/metabolism , Repressor Proteins/genetics , Tumor Suppressor Protein p53/genetics , 3' Untranslated Regions , Cell Line, Tumor , HCT116 Cells , HeLa Cells , Humans , Mitochondria/genetics , Neoplasms/genetics , Promoter Regions, Genetic , RNA Stability , RNA, Messenger/chemistry , RNA, Messenger/metabolism
20.
J Cell Sci ; 129(4): 804-16, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26743087

ABSTRACT

Disconnection between membrane signalling and actin networks can have catastrophic effects depending on cell size and polarity. The survival motor neuron (SMN) protein is ubiquitously involved in assembly of spliceosomal small nuclear ribonucleoprotein particles. Other SMN functions could, however, affect cellular activities driving asymmetrical cell surface expansions. Genes able to mitigate SMN deficiency operate within pathways in which SMN can act, such as mRNA translation, actin network and endocytosis. Here, we found that SMN accumulates at membrane protrusions during the dynamic rearrangement of the actin filaments. In addition to localization data, we show that SMN interacts with caveolin-1, which mediates anchoring of translation machinery components. Importantly, SMN deficiency depletes the plasma membrane of ribosomes, and this correlates with the failure of fibroblasts to extend membrane protrusions. These findings strongly support a relationship between SMN and membrane dynamics. We propose that SMN could assembly translational platforms associated with and governed by the plasma membrane. This activity could be crucial in cells that have an exacerbated interdependence of membrane remodelling and local protein synthesis.


Subject(s)
Cell Membrane/metabolism , SMN Complex Proteins/physiology , Actin Cytoskeleton/metabolism , Caveolin 1/metabolism , Cell Membrane/ultrastructure , Cell Surface Extensions/metabolism , Cell Surface Extensions/ultrastructure , Cells, Cultured , Humans , Protein Biosynthesis , Protein Transport , Ribosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...