Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Biomedicines ; 11(9)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37760776

ABSTRACT

Metformin (Met) is a drug commonly prescribed in type 2 diabetes mellitus. Its efficacy is due to the suppression of hepatic gluconeogenesis, enhancement of peripheral glucose uptake and lower glucose absorption by the intestine. Recent studies have reported Met efficacy in other clinical applications, such as age-related diseases. Despite the wide clinical use of Met, its mechanism of action on muscle and its effect on muscle performance are unclear. We investigated the effects of Met combined with training on physical performance (PP) in healthy rats receiving Met for 8 weeks while undergoing daily moderate exercise. We evaluated the following: PP through graded endurance exercise test performed before the beginning of the training protocol and 48 h before the end of the training period; blood ALT, AST, LDH and CK-MB levels in order to address muscle damage; and several blood and muscle myokines and the expression of factors believed to be involved in muscle adaptation to exercise. Our data demonstrate that Met does not improve the positive effects of exercise on performance, although it protects myocytes from exercise-induced damage. Moreover, given that Met positively affects exercise-induced muscle adaptation, our data support the idea of the therapeutic application of Met when muscle function and structure are compromised.

2.
BMC Med Genomics ; 16(1): 94, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37138349

ABSTRACT

BACKGROUND: The effects of Anabolic Androgenic Steroids (AAS) are largely illustrated through Androgen Receptor induced gene transcription, yet RNA-Seq has yet to be conducted on human whole blood and skeletal muscle. Investigating the transcriptional signature of AAS in blood may aid AAS detection and in muscle further understanding of AAS induced hypertrophy. METHODS: Males aged 20-42 were recruited and sampled once: sedentary controls (C), resistance trained lifters (RT) and resistance trained current AAS users (RT-AS) who ceased exposure ≤ 2 or ≥ 10 weeks prior to sampling. RT-AS were sampled twice as Returning Participants (RP) if AAS usage ceased for ≥ 18 weeks. RNA was extracted from whole blood and trapezius muscle samples. RNA libraries were sequenced twice, for validation purposes, on the DNBSEQ-G400RS with either standard or CoolMPS PE100 reagents following MGI protocols. Genes were considered differentially expressed with FDR < 0.05 and a 1.2- fold change. RESULTS: Cross-comparison of both standard reagent whole blood (N = 55: C = 7, RT = 20, RT-AS ≤ 2 = 14, RT-AS ≥ 10 = 10, RP = 4; N = 46: C = 6, RT = 17, RT-AS ≤ 2 = 12, RT-AS ≥ 10 = 8, RP = 3) sequencing datasets, showed that no genes or gene sets/pathways were differentially expressed between time points for RP or between group comparisons of RT-AS ≤ 2 vs. C, RT, or RT-AS ≥ 10. Cross-comparison of both muscle (N = 51, C = 5, RT = 17, RT-AS ≤ 2 = 15, RT-AS ≥ 10 = 11, RP = 3) sequencing (one standard & one CoolMPS reagent) datasets, showed one gene, CHRDL1, which has atrophying potential, was upregulated in RP visit two. In both muscle sequencing datasets, nine differentially expressed genes, overlapped with RT-AS ≤ 2 vs. RT and RT-AS ≤ 2 vs. C, but were not differentially expressed with RT vs. C, possibly suggesting they are from acute doping alone. No genes seemed to be differentially expressed in muscle after the long-term cessation of AAS, whereas a previous study found long term proteomic changes. CONCLUSION: A whole blood transcriptional signature of AAS doping was not identified. However, RNA-Seq of muscle has identified numerous differentially expressed genes with known impacts on hypertrophic processes that may further our understanding on AAS induced hypertrophy. Differences in training regimens in participant groupings may have influenced results. Future studies should focus on longitudinal sampling pre, during and post-AAS exposure to better control for confounding variables.


Subject(s)
Anabolic Agents , Anabolic Androgenic Steroids , Male , Humans , Anabolic Agents/pharmacology , Transcriptome , Proteomics , RNA-Seq , Testosterone Congeners/adverse effects , Muscle, Skeletal/physiology
3.
PLoS One ; 18(2): e0281718, 2023.
Article in English | MEDLINE | ID: mdl-36763621

ABSTRACT

This study aims to investigate how metformin (Met) affects muscle tissue by evaluating the drug effects on proliferating, differentiating, and differentiated C2C12 cells. Moreover, we also investigated the role of 5'-adenosine monophosphate-activated protein kinase (AMPK) in the mechanism of action of Met. C2C12 myoblasts were cultured in growth medium with or without Met (250µM, 1mM and 10mM) for different times. Cell proliferation was evaluated by MTT assay, while cell toxicity was assessed by Trypan Blue exclusion test and Lactate Dehydrogenase release. Fluorescence Activated Cell Sorting analysis was performed to study cell cycle. Differentiating myoblasts were incubated in differentiation medium (DM) with or without 10mM Met. For experiments on myotubes, C2C12 were induced to differentiate in DM, and then treated with Met at scalar concentrations and for different times. Western blotting was performed to evaluate the expression of proteins involved in myoblast differentiation, muscle function and metabolism. In differentiating C2C12, Met inhibited cell differentiation, arrested cell cycle progression in G2/M phase and reduced the expression of cyclin-dependent kinase inhibitor 1. These effects were accompanied by activation of AMPK and modulation of the myogenic regulatory factors. Comparable results were obtained in myotubes. The use of Compound C, a specific inhibitor of AMPK, counteracted the above-mentioned Met effects. We reported that Met inhibits C2C12 differentiation probably by blocking cell-cycle progression and preventing cells permanent exit from cell-cycle. Moreover, our study provides solid evidence that most of the effects of Met on myoblasts and myotubes are mediated by AMPK.


Subject(s)
AMP-Activated Protein Kinases , Metformin , AMP-Activated Protein Kinases/metabolism , Metformin/pharmacology , Metformin/metabolism , Cell Line , Cell Differentiation , Myoblasts/metabolism
4.
Nutrients ; 15(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36678330

ABSTRACT

BACKGROUND: Oxidative stress and impaired autophagy are directly and indirectly implicated in exercise-mediated muscle injury. Trehalose, spermidine, nicotinamide, and polyphenols possess pro-autophagic and antioxidant properties, and could therefore reduce exercise-induced damage to skeletal muscle. The aim of this study was to investigate whether a mixture of these compounds was able to improve muscle injury biomarkers in endurance athletes through the modulation of oxidative stress and autophagic machinery. METHODS AND RESULTS: sNOX2-dp; H2O2 production; H2O2 breakdown activity (HBA); ATG5 and p62 levels, both markers of autophagic process; and muscle injury biomarkers were evaluated in five endurance athletes who were allocated in a crossover design study to daily administration of 10.5 g of an experimental mixture or no treatment, with evaluations conducted at baseline and after 30 days of mixture consumption. Compared to baseline, the mixture intake led to a remarkable reduction of oxidative stress and positively modulated autophagy. Finally, after the 30-day supplementation period, a significant decrease in muscle injury biomarkers was found. CONCLUSION: Supplementation with this mixture positively affected redox state and autophagy and improved muscle injury biomarkers in athletes, allowing for better muscle recovery. Moreover, it is speculated that this mixture could also benefit patients suffering from muscle injuries, such as cancer or cardiovascular patients, or elderly subjects.


Subject(s)
Hydrogen Peroxide , Oxidative Stress , Humans , Aged , Pilot Projects , Antioxidants/pharmacology , Athletes , Muscle, Skeletal , Biomarkers , Autophagy
5.
Clin J Sport Med ; 33(5): e115-e122, 2023 09 01.
Article in English | MEDLINE | ID: mdl-35533133

ABSTRACT

OBJECTIVE: It remains unknown whether myonuclei remain elevated post anabolic-androgenic steroid (AAS) usage in humans. Limited data exist on AAS-induced changes in gene expression. DESIGN: Cross-sectional/longitudinal. SETTING: University. PARTICIPANTS: Fifty-six men aged 20 to 42 years. INDEPENDENT VARIABLES: Non-resistance-trained (C) or resistance-trained (RT), RT currently using AAS (RT-AS), of which if AAS usage ceased for ≥18 weeks resampled as Returning Participants (RP) or RT previously using AAS (PREV). MAIN OUTCOME MEASURES: Myonuclei per fiber and cross-sectional area (CSA) of trapezius muscle fibers. RESULTS: There were no significant differences between C (n = 5), RT (n = 15), RT-AS (n = 17), and PREV (n = 6) for myonuclei per fiber. Three of 5 returning participants (RP1-3) were biopsied twice. Before visit 1, RP1 ceased AAS usage 34 weeks before, RP2 and RP3 ceased AAS usage ≤2 weeks before, and all had 28 weeks between visits. Fiber CSA decreased for RP1 and RP2 between visits (7566 vs 6629 µm 2 ; 7854 vs 5677 µm 2 ) while myonuclei per fiber remained similar (3.5 vs 3.4; 2.5 vs 2.6). Respectively, these values increased for RP3 between visits (7167 vs 7889 µm 2 ; 2.6 vs 3.3). CONCLUSIONS: This cohort of past AAS users did not have elevated myonuclei per fiber values, unlike previous research, but reported AAS usage was much lower. Training and AAS usage history also varied widely among participants. Comparable myonuclei per fiber numbers despite decrements in fiber CSA postexposure adheres with the muscle memory mechanism, but there is variation in usage relative to sampling date and low numbers of returning participants.


Subject(s)
Anabolic Agents , Anabolic Androgenic Steroids , Male , Humans , Androgens/adverse effects , Anabolic Agents/adverse effects , Muscles , Gene Expression
6.
Nutrients ; 14(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35458119

ABSTRACT

Mechanisms of exercise-induced muscle injury with etiopathogenesis and its consequences have been described; however, the impact of different intensities of exercise on the mechanisms of muscular injury development is not well understood. The aim of this study was to exploit the relationship between platelet activation, oxidative stress and muscular injuries induced by physical exercise in elite football players compared to amateur athletes. Oxidant/antioxidant status, platelet activation and markers of muscle damage were evaluated in 23 elite football players and 23 amateur athletes. Compared to amateurs, elite football players showed lower antioxidant capacity and higher oxidative stress paralleled by increased platelet activation and muscle damage markers. Simple linear regression analysis showed that sNOX2-dp and H2O2, sCD40L and PDGF-bb were associated with a significant increase in muscle damage biomarkers. In vitro studies also showed that plasma obtained from elite athletes increased oxidative stress and muscle damage in human skeletal muscle myoblasts cell line compared to amateurs' plasma, an effect blunted by the NOX2 inhibitor or by the cell treatment with cocoa-derived polyphenols. These results indicate that platelet activation increased muscular injuries induced by oxidative stress. Moreover, NOX2 inhibition and polyphenol extracts treatment positively modulates redox status and reduce exercise-induced muscular injury.


Subject(s)
Cacao , Polyphenols , Antioxidants/metabolism , Antioxidants/pharmacology , Athletes , Biomarkers , Humans , Hydrogen Peroxide/metabolism , Muscle, Skeletal/metabolism , Oxidative Stress , Platelet Activation , Polyphenols/metabolism , Polyphenols/pharmacology
7.
Front Mol Biosci ; 8: 728273, 2021.
Article in English | MEDLINE | ID: mdl-34765642

ABSTRACT

Introduction: Recombinant human erythropoietin (rHuEPO) administration studies involving transcriptomic approaches have demonstrated a gene expression signature that could aid blood doping detection. However, current anti-doping testing does not involve collecting whole blood into tubes with RNA preservative. This study investigated if whole blood in long-term storage and whole blood left over from standard hematological testing in short-term storage could be used for transcriptomic analysis despite lacking RNA preservation. Methods: Whole blood samples were collected from twelve and fourteen healthy nonathletic males, for long-term and short-term storage experiments. Long-term storage involved whole blood collected into Tempus™ tubes and K2EDTA tubes and subjected to long-term (i.e., ‒80°C) storage and RNA extracted. Short-term storage involved whole blood collected into K2EDTA tubes and stored at 4°C for 6‒48 h and then incubated at room temperature for 1 and 2 h prior to addition of RNA preservative. RNA quantity, purity, and integrity were analyzed in addition to RNA-Seq using the MGI DNBSEQ-G400 on RNA from both the short- and long-term storage studies. Genes presenting a fold change (FC) of >1.1 or < ‒1.1 with p ≤ 0.05 for each comparison were considered differentially expressed. Microarray analysis using the Affymetrix GeneChip® Human Transcriptome 2.0 Array was additionally conducted on RNA from the short-term study with a false discovery ratio (FDR) of ≤0.05 and an FC of >1.1 or < ‒1.1 applied to identify differentially expressed genes. Results: RNA quantity, purity, and integrity from whole blood subjected to short- and long-term storage were sufficient for gene expression analysis. Long-term storage: when comparing blood tubes with and without RNA preservation 4,058 transcripts (6% of coding and non-coding transcripts) were differentially expressed using microarray and 658 genes (3.4% of mapped genes) were differentially expressed using RNA-Seq. Short-term storage: mean RNA integrity and yield were not significantly different at any of the time points. RNA-Seq analysis revealed a very small number of differentially expressed genes (70 or 1.37% of mapped genes) when comparing samples stored between 6 and 48 h without RNA preservative. None of the genes previously identified in rHuEPO administration studies were differently expressed in either long- or short-term storage experiments. Conclusion: RNA quantity, purity, and integrity were not significantly compromised from short- or long-term storage in blood storage tubes lacking RNA stabilization, indicating that transcriptomic analysis could be conducted using anti-doping samples collected or biobanked without RNA preservation.

8.
J Sports Med Phys Fitness ; 61(8): 1173-1183, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34256541

ABSTRACT

The coronavirus disease (COVID-19) pandemic has had an unprecedent impact on the world of sport and society at large. Many of the challenges with respect to integrity previously facing competitive sport have been accentuated further during the pandemic. Threats to the integrity of sporting competition include traditional doping, issues of technological fairness, and integration of transgender and intersex athletes in elite sport. The enforced lull in competitive sport provides an unprecedented opportunity for stakeholders in sport to focus on unresolved integrity issues and develop and implement long-lasting solutions. There needs to be a concerted effort to focus on the many technological innovations accelerated by and perfected during COVID-19 that have enabled us to work from home, such as teaching students on-line, applications for medical advice, prescriptions and referrals, and treating patients in hospitals/care homes via video links and use these developments and innovations to enhance sport integrity and anti-doping procedures. Positive sports integrity actions will require a considered application of all such technology, as well as the inclusion of "omics" technology, big data, bioinformatics and machine learning/artificial intelligence approaches to modernize sport. Applications include protecting the health of athletes, considered non-discriminative integration of athletes into elite sport, intelligent remote testing to improve the frequency of anti-doping tests, detection windows, and the potential combination with omics technology to improve the tests' sensitivity and specificity in order to protect clean athletes and deter doping practices.


Subject(s)
COVID-19 , Doping in Sports , Artificial Intelligence , Athletes , Humans , Pandemics , SARS-CoV-2
9.
Article in English | MEDLINE | ID: mdl-32872427

ABSTRACT

The study aimed to investigate the correlations among immune, haematological, endocrinological markers and fitness parameters, and assess if the physiological parameters could be a predictor of fitness values. Anthropometric, physical evaluations (countermovement jump-CMJ, 10 m sprint, VO2max, repeated sprint ability-RSA total time and index) and determination of blood (IL-6, IL-10, IL-17A and tumour necrosis factor) and salivary (testosterone and cortisol) samples parameters in 28 young male soccer players (age: 13.0 ± 0.2 years, body mass index (BMI): 19.5 ± 2.2 kg/m2) were analysed. To evaluate the dependence of the variables related to athletic performance, multiple linear regression with backward stepwise elimination was considered. A significant regression equation was found in CMJ (F(5,16) = 9.86, p < 0.001, R2 adjusted = 0.679) and in the RSA index (F(5,16) = 15.39, p < 0.001, R2 adjusted = 0.774) considering only five variables, in a 10 m sprint (F(4,17) = 20.25, p < 0.001, R2 adjusted = 0.786) and in the RSA total time (F(4,17) = 15.31, p < 0.001, R2 adjusted = 0.732) considering only four variables and in VO2max (F(9,12) = 32.09, p < 0.001, R2 adjusted = 0.930) considering nine variables. Our study suggests the use of regression equations to predict the fitness values of youth soccer players by blood and saliva samples, during different phases of the season, short periods of match congestion or recovery from an injury.


Subject(s)
Biomarkers , Physical Fitness , Running , Soccer , Adolescent , Child , Exercise Test , Humans , Male , Pilot Projects
10.
J Clin Med ; 9(4)2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32295038

ABSTRACT

In the scientific landscape, there is a growing interest in defining the role of several biomolecules and humoral indicators of the aging process and in the modifications of these biomarkers induced by physical activity and exercise. The main aim of the present narrative review is to collect the available evidence on the biohumoral indicators that could be modified by physical activity (PA) in the elderly. Online databases including Pubmed, Web of science (Medline), and Scopus were searched for relevant articles published in the last five years in English. Keywords and combination of these used for the search were the following: "biological", "indicators", "markers", "physical", "activity", and "elderly". Thirty-four papers were analyzed for inclusion. Twenty-nine studies were included and divided into four categories: cardiovascular (CV) biomarkers, metabolic biomarkers, inflammatory markers-oxidative stress molecules, and other markers. There are many distinct biomarkers influenced by PA in the elderly, with promising results concerning the metabolic and CV indexes, as a growing number of studies demonstrate the role of PA on improving parameters related to heart function and CV risk like atherogenic lipid profile. Furthermore, it is also a verified hypothesis that PA is able to modify the inflammatory status of the subject by decreasing the levels of pro-inflammatory cytokines, including interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). PA seems also to be able to have a direct effect on the immune system. There is a strong evidence of a positive effect of PA on the health of elderly people that could be evidenced and "quantified" by the modifications of the levels of several biohumoral indicators.

11.
J Clin Med ; 9(3)2020 Mar 09.
Article in English | MEDLINE | ID: mdl-32182904

ABSTRACT

Ageing is accompanied by a severe muscle function decline presumably caused by structural and functional adaptations at the central and peripheral level. Although researchers have reported an extensive analysis of the alterations involving muscle intrinsic properties, only a limited number of studies have recognised the importance of the central nervous system, and its reorganisation, on neuromuscular decline. Neural changes, such as degeneration of the human cortex and function of spinal circuitry, as well as the remodelling of the neuromuscular junction and motor units, appear to play a fundamental role in muscle quality decay and culminate with considerable impairments in voluntary activation and motor performance. Modern diagnostic techniques have provided indisputable evidence of a structural and morphological rearrangement of the central nervous system during ageing. Nevertheless, there is no clear insight on how such structural reorganisation contributes to the age-related functional decline and whether it is a result of a neural malfunction or serves as a compensatory mechanism to preserve motor control and performance in the elderly population. Combining leading-edge techniques such as high-density surface electromyography (EMG) and improved diagnostic procedures such as functional magnetic resonance imaging (fMRI) or high-resolution electroencephalography (EEG) could be essential to address the unresolved controversies and achieve an extensive understanding of the relationship between neural adaptations and muscle decline.

12.
PLoS One ; 14(11): e0225471, 2019.
Article in English | MEDLINE | ID: mdl-31765396

ABSTRACT

The aims of the study were to investigate 1) the effect of 8 weeks of PSP training on anthropometrics, salivary hormones and fitness parameters in youth soccer players, 2) the correlations between fitness and hormonal parameters, and 3) the impact of the experience of the coach and his methodology of training on these parameters. Weight, height, BMI, pubertal development (PDS), salivary Cortisol (sC), salivary Testosterone (sT), salivary sDHEAS, intermittent tests (VO2max), and countermovement jump test (CMJ) modifications of 35 youth soccer players (age: 14±0 yrs; BMI: 20.8±1.8 k/m2) from two Italian clubs ("Lupa Frascati" -LF-; "Albalonga" -AL) were analysed. A significant (p<0.05) time by club effect was observed in sC (F(1,31) = 9.7, ES = 1.13), sT (F(1,31) = 4.2, ES = 0.74), CMJ (F(1,28) = 26.5, ES = 1.94), and VO2max (F(1,28) = 8.5, ES = 1.10). Statistical differences (p<0.05) in weight (F(1,32) = 25.5, ES = 0.11), sC (F(1,31) = 32.1, ES = 1.43), sT/sC ratio (F(1,31) = 10.1, ES = 0.97), sDHEAS/sC ratio (F(1,31) = 6.3, ES = 0.70), and VO2max (F(1,28) = 64.3, ES = 1.74) were found within time factor. Between clubs, differences (p<0.05) in sC (F(1,32) = 8.5, ES = 1.17), sT (F(1,31) = 4.2, ES = 0.74), CMJ (F(1,28) = 26.5, ES = 1.50), and VO2max (F(1,28) = 8.5, ES = 1.10) were found. CMJ was inversely correlated with sDHEAS (r = -0.38) before PSP, while Δ of CMJ showed significant correlations with Δ of sC (r = 0.43) and ΔVO2max was inversely correlated with ΔBMI (r = -0.54) and ΔsC (r = -0.37) in all subjects. Considering each single club, ΔVO2max showed correlations with ΔBMI (r = -0.45) in AL, while ΔCMJ showed correlations with ΔPDS (r = 0.72) in LF club. Since the PSP is often limited training time to simultaneously develop physical, technical and tactical qualities, an efficient method to distribute the training load is important in youth soccer players to increase the performance and to avoid injuries.


Subject(s)
Athletes , Hydrocortisone/analysis , Physical Fitness , Testosterone/analysis , Adolescent , Athletic Performance , Body Mass Index , Body Weight , Humans , Male , Saliva/metabolism , Sexual Maturation , Soccer
13.
Nutrients ; 11(6)2019 06 15.
Article in English | MEDLINE | ID: mdl-31208096

ABSTRACT

The role of oxidative stress, an imbalance between reactive oxygen species production (ROS) and antioxidants, has been described in several patho-physiological conditions, including cardiovascular, neurological diseases and cancer, thus impacting on individuals' lifelong health. Diet, environmental pollution, and physical activity can play a significant role in the oxidative balance of an organism. Even if physical training has proved to be able to counteract the negative effects caused by free radicals and to provide many health benefits, it is also known that intensive physical activity induces oxidative stress, inflammation, and free radical-mediated muscle damage. Indeed, variations in type, intensity, and duration of exercise training can activate different patterns of oxidant-antioxidant balance leading to different responses in terms of molecular and cellular damage. The aim of the present review is to discuss (1) the role of oxidative status in athletes in relation to exercise training practice, (2) the implications for muscle damage, (3) the long-term effect for neurodegenerative disease manifestations, (4) the role of antioxidant supplementations in preventing oxidative damages.


Subject(s)
Antioxidants/physiology , Exercise/physiology , Oxidants/physiology , Oxidative Stress/physiology , Athletes , Dietary Supplements , Free Radicals , Humans , Muscular Diseases/etiology , Muscular Diseases/prevention & control , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/prevention & control , Oxidation-Reduction , Reactive Oxygen Species
14.
Curr Sports Med Rep ; 18(4): 97-104, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30969231

ABSTRACT

The benefit of training at altitude to enhance exercise performance remains equivocal although the most widely accepted approach is one where the athletes live and perform lower-intensity running at approximately 2300 m with high-intensity training at approximately 1250 m. The idea is that this method maintains maximal augmentations in total hemoglobin mass while reducing the performance impairment of high-intensity sessions performed at moderate altitude and thus preventing any detraining that can occur when athletes live and train at moderate altitude. This training regimen, however, is not universally accepted and some argue that the performance enhancement is due to placebo and training camp effects. Altitude training may affect an athlete's hematological parameters in ways similar to those observed following blood doping. Current methods of detection appear insufficient to differentiate between altitude training and blood doping making the interpretation of an athlete's biological passport difficult. Further research is required to determine the optimal method for altitude training and to enhance current detection methods to be able to differentiate better blood doping and altitude exposure.


Subject(s)
Altitude , Athletic Performance/physiology , Doping in Sports , Erythropoietin/administration & dosage , Physical Conditioning, Human/methods , Humans , Randomized Controlled Trials as Topic , Recombinant Proteins/administration & dosage
15.
Aging Male ; 22(2): 75-88, 2019 Jun.
Article in English | MEDLINE | ID: mdl-29451419

ABSTRACT

BACKGROUND: Sarcopenia is a pathophysiological condition diffused in elderly people; it represents a social issue due to the longer life expectancy and the growing aging population. It affects negatively quality of life and it represents a risk factor for other pathologies, such as diabetes, cardiovascular disease, and obesity. No silver bullet exists to hinder sarcopenia, but it may be counteracted by physical exercise, nutrition, and a proper endocrine milieu. Indeed, we aim to analyze the scientific literature to give to clinician effective advices to counteract sarcopenia. Main text: Physical exercise, proper nutrition, optimized hormonal homeostasis represent the three pillars to fight sarcopenia. Physical exercise represents the most effective remedy to face sarcopenia, in particular if it is combined with a proper diet and with an adequate endocrine milieu. Consistency in training, adequate daily protein intake and eugonadism seems to be the keys to fight sarcopenia. The combination of these three pillars might act synergistically. CONCLUSIONS: Optimization of these factors may increase their efficiency; however, scientific data may be sometimes confusing so far. Therefore, we aim to give practical advices to clinician to identify and to highlight the most important aspects in each of these three factors that should be addressed.


Subject(s)
Diet, Healthy/methods , Endurance Training/methods , Hormone Replacement Therapy/methods , Resistance Training/methods , Sarcopenia/therapy , Aged , Dietary Proteins/administration & dosage , Humans , Male , Quality of Life
16.
Curr Sports Med Rep ; 17(12): 444-453, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30531462

ABSTRACT

Priorities for every athlete include improving endurance performance, optimizing training, nutrition, and recovery. Nutritional strategies are crucial to support athletes to perform at the highest level, and considering that muscular and hepatic glycogen stores are limited, alternative strategies to maximize fat metabolism have been suggested. A ketogenic diet has been proposed as a possible method of providing metabolic fuel during prolonged periods of exercise. However, clinical trials and empirical experience have produced contrasting results regarding the ergogenic value of a ketogenic diet. For this reason, using ketone esters and/or salts have been proposed to obtain nutritional ketosis without limiting carbohydrate intake. Exogenous ketones should not only represent an alternative metabolic fuel source, sparing carbohydrates, but they also may increase postexercise glycogen replenishment, decrease proteolysis, and act as metabolic modulators and signaling metabolites. While there are some encouraging results showing an increase in endurance performance, contrasting evidence regarding the efficacy of exogenous ketones for endurance performance is present and further studies should be performed to make a definitive statement.


Subject(s)
Athletic Performance , Dietary Supplements , Exercise , Ketone Bodies/physiology , Physical Endurance , Sports Nutritional Physiological Phenomena , Diet, Ketogenic , Dietary Carbohydrates , Humans , Ketosis , Performance-Enhancing Substances
17.
Platelets ; 29(6): 596-601, 2018 Sep.
Article in English | MEDLINE | ID: mdl-28895770

ABSTRACT

The aim of the present retrospective observational study was to evaluate the time of functional recovery following a specific combined therapeutic approach characterized by an active exercise therapy carried out immediately after Platelet-rich plasma (PRP) injections for the treatment of the muscular lesion of the distal musculotendinous junction of the gastrocnemius medial head.Medical records of 31 subjects treated with three PRP intra-lesional ultrasound guided injections and 30 patients treated with the standard therapeutic approach (control group) were analyzed. Both groups followed the same rehabilitation therapy. Patients in the control group were able to start active exercise with a significant delay when compared to the PRP treated subjects: 17 ± 7.2 days and 9 ± 3.8 days (p = 0.0001), respectively. This delay was mainly due to the persistence of pain in the subjects in the control group. The time necessary to return to walk without pain was significantly shorter in the PRP treated group: 24.27 ± 12.36 days versus 52.4 ± 20.03 days in the control group (p < 0.001) as well as the time needed to fully return to practice the previous sport activity: 53.33 ± 27.74 days versus 119.3 ± 43.87 days in the control group (p < 0.001).The present study showed that ultrasound guided delivery of PRP into the site of muscle injury has to be considered a valid therapeutic approach with the potentiality of significantly reduce time and costs for reaching a complete functional recovery.


Subject(s)
Muscle, Skeletal/abnormalities , Platelet-Rich Plasma/metabolism , Female , Humans , Male , Platelet-Rich Plasma/cytology , Retrospective Studies
18.
Disabil Rehabil ; 40(22): 2632-2636, 2018 11.
Article in English | MEDLINE | ID: mdl-28697654

ABSTRACT

PURPOSE: The purpose of this study was to investigate the acute effects of whole body vibration at optimal frequency, on postural control in blind subjects. METHOD: Twenty-four participants, 12 congenital blind males (Experimental Group), and 12 non-disabled males with no visual impairment (Control Groups) were recruited. The area of the ellipse and the total distance of the center of pressure displacements, as postural control parameters, were evaluated at baseline (T0), immediately after the vibration (T1), after 10 min (T10) and after 20 min (T20). Whole body vibration protocol consisted into 5 sets of 1 min for each vibration, with 1 min rest between each set on a vibrating platform. RESULTS: The total distance of center of pressure showed a significant difference (p < 0.05) amongst groups, while the area remained constant. No significant differences were detected among times of assessments, or in the interaction group × time. CONCLUSION: No impairments in static balance were found after an acute bout of whole body vibration at optimal frequency in blind subjects and, consequently, whole body vibration may be considered as a safe application in individuals who are blind.


Subject(s)
Blindness/rehabilitation , Postural Balance/physiology , Vibration/therapeutic use , Adult , Blindness/congenital , Blindness/physiopathology , Case-Control Studies , Electromyography , Humans , Lower Extremity/physiology , Male , Muscle, Skeletal/physiology , Sedentary Behavior
19.
Curr Sports Med Rep ; 16(6): 443-447, 2017.
Article in English | MEDLINE | ID: mdl-29135645

ABSTRACT

Phosphodiesterase type 5 inhibitors (PDE5i) (e.g., sildenafil, tadalafil, vardenafil, and avanafil) are drugs commonly used to treat erectile dysfunction, pulmonary arterial hypertension, and benign prostatic hyperplasia. PDE5i are not prohibited by the World Anti-Doping Agency (WADA) but are alleged to be frequently misused by healthy athletes to improve sporting performance. In vitro and in vivo studies have reported various effects of PDE5i on cardiovascular, muscular, metabolic, and neuroendocrine systems and the potential, therefore, to enhance performance of healthy athletes during training and competition. This suggests well-controlled research studies to examine the ergogenic effects of PDE5i on performance during activities that simulate real sporting situations are warranted to determine if PDE5i should be included on the prohibited WADA list. In the meantime, there is concern that some otherwise healthy athletes will continue to misuse PDE5i to gain an unfair competitive advantage over their competitors.


Subject(s)
Athletic Performance , Doping in Sports , Performance-Enhancing Substances/pharmacology , Phosphodiesterase 5 Inhibitors/pharmacology , Humans
20.
Curr Sports Med Rep ; 16(6): 459-463, 2017.
Article in English | MEDLINE | ID: mdl-29135647

ABSTRACT

The healing of a muscle injury is a complex and dynamic process characterized by different overlapping phases resulting in the restoration of the anatomic continuity and function. This process, triggered by the tissue injury itself, is modulated by different growth factors capable of directing the recruitment, duplication, activation, and differentiation of different cell types. This key role played by different growth factors is the basis of the use of platelet-rich plasma in several circumstances, all of them characterized by the need of activating or ameliorating the process of tissue repair. There is an extensive documentation of in vitro and in vivo studies demonstrating the safety and efficacy of growth factors in the muscle healing process. Unfortunately, for many different reasons, experimental results are usually difficult to interpret, clinical results are controversial, and the relevance of use is still debatable. The present article aims to review the available scientific literature with particular focus on actual clinical applications.


Subject(s)
Athletic Injuries/therapy , Muscle, Skeletal/injuries , Platelet-Rich Plasma , Humans , Intercellular Signaling Peptides and Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...