Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Type of study
Publication year range
1.
FEBS Lett ; 598(6): 670-683, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38433717

ABSTRACT

Ferredoxin/flavodoxin-NADPH reductases (FPRs) catalyze the reversible electron transfer between NADPH and ferredoxin/flavodoxin. The Acinetobacter sp. Ver3 isolated from high-altitude Andean lakes contains two isoenzymes, FPR1ver3 and FPR2ver3. Absorption spectra of these FPRs revealed typical features of flavoproteins, consistent with the use of FAD as a prosthetic group. Spectral differences indicate distinct electronic arrangements for the flavin in each enzyme. Steady-state kinetic measurements show that the enzymes display catalytic efficiencies in the order of 1-6 µm-1·s-1, although FPR1ver3 exhibited higher kcat values compared to FPR2ver3. When flavodoxinver3 was used as a substrate, both reductases exhibited dissimilar behavior. Moreover, only FPR1ver3 is induced by oxidative stimuli, indicating that the polyextremophile Ver3 has evolved diverse strategies to cope with oxidative environments.


Subject(s)
Ferredoxins , Flavodoxin , Flavodoxin/metabolism , NADP/metabolism , Ferredoxins/metabolism , Ferredoxin-NADP Reductase/chemistry , Ferredoxin-NADP Reductase/metabolism , Protein Isoforms , Kinetics
2.
Biomolecules ; 11(7)2021 06 25.
Article in English | MEDLINE | ID: mdl-34201916

ABSTRACT

DesK is a Histidine Kinase that allows Bacillus subtilis to maintain lipid homeostasis in response to changes in the environment. It is located in the membrane, and has five transmembrane helices and a cytoplasmic catalytic domain. The transmembrane region triggers the phosphorylation of the catalytic domain as soon as the membrane lipids rigidify. In this research, we study how transmembrane inter-helical interactions contribute to signal transmission; we designed a co-expression system that allows studying in vivo interactions between transmembrane helices. By Alanine-replacements, we identified a group of polar uncharged residues, whose side chains contain hydrogen-bond donors or acceptors, which are required for the interaction with other DesK transmembrane helices; a particular array of H-bond- residues plays a key role in signaling, transmitting information detected at the membrane level into the cell to finally trigger an adaptive response.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Protein Transport/physiology , Amino Acid Sequence , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/chemistry , Histidine Kinase/chemistry , Hydrogen Bonding
3.
RSC Med Chem ; 12(1): 120-128, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-34046604

ABSTRACT

Triclosan and isoniazid are known antitubercular compounds that have proven to be also active against Leishmania parasites. On these grounds, a collection of 37 diverse 1,2,3-triazoles based on the antitubercular molecules triclosan and 5-octyl-2-phenoxyphenol (8PP) were designed in search of novel structures with leishmanicidal activity and prepared using different alkynes and azides. The 37 compounds were assayed against Leishmania donovani, the etiological agent of leishmaniasis, yielding some analogs with activity at micromolar concentrations and against M. tuberculosis H37Rv resulting in scarce active compounds with an MIC of 20 µM. To study the mechanism of action of these catechols, we analyzed the inhibition activity of the library on the M. tuberculosis enoyl-ACP reductase (ENR) InhA, obtaining poor inhibition of the enzyme. The cytotoxicity against Vero cells was also tested, resulting in none of the compounds being cytotoxic at concentrations of up to 20 µM. Derivative 5f could be considered a valuable starting point for future antileishmanial drug development. The validation of a putative leishmanial InhA orthologue as a therapeutic target needs to be further investigated.

4.
Eur J Med Chem ; 208: 112699, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32927391

ABSTRACT

A library of thirty N-substituted tosyl N'-acryl-hydrazones was prepared with p-toluenesulfonyl hydrazide, methyl propiolate and different aldehydes in a one-pot synthesis via an aza-Michael reaction. The scope of the reaction was studied, including aliphatic, isoprenylic, aromatic and carbocyclic aldehydes. The prepared collection was tested against Mycobacterium tuberculosis H37Rv. Nine analogs of the collection showed Minimum Inhibitory Concentration ≤10 µM, of which the most active members (MIC of 1.25 µM) were exclusively E isomers. In order to validate the mechanism of action of the most active acrylates, we tested their activity on a M. tuberculosis InhA over-expressing strain obtaining MIC that consistently doubled those obtained on the wild type strain. Additionally, the binding mode of those analogs on M. tuberculosis InhA was investigated by docking simulations. The results displayed a hydrogen bond interaction between the sulfonamide and Ile194 and the carbonyl of the methyl ester with Tyr 158 (both critical residues in the interaction with the fatty acyl chain substrate), where the main differences on the binding mode relays on the hydrophobicity of the nitrogen substituent. Additionally, chemoinformatic analysis was performed to evaluate in silico possible cytotoxicity risk and ADME-Tox profile. Based on their simple preparation and interesting antimycobacterial activity profile, the newly prepared aza-acrylates are promising candidates for antitubercular drug development.


Subject(s)
Antitubercular Agents/pharmacology , Hydrazones/pharmacology , Tosyl Compounds/pharmacology , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/metabolism , Bacterial Proteins/metabolism , Chlorocebus aethiops , Hydrazones/chemical synthesis , Hydrazones/metabolism , Isoniazid/chemistry , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Mycobacterium tuberculosis/drug effects , Oxidoreductases/metabolism , Protein Binding , Structure-Activity Relationship , Tosyl Compounds/chemical synthesis , Tosyl Compounds/metabolism , Vero Cells
5.
Biomolecules ; 10(8)2020 08 14.
Article in English | MEDLINE | ID: mdl-32823946

ABSTRACT

The two-component system DesK-DesR regulates the synthesis of unsaturated fatty acids in the soil bacteria Bacillus subtilis. This system is activated at low temperature and maintains membrane lipid fluidity upon temperature variations. Here, we found that DesK-the transmembrane histidine kinase-also responds to pH and studied the mechanism of pH sensing. We propose that a helix linking the transmembrane region with the cytoplasmic catalytic domain is involved in pH sensing. This helix contains several glutamate, lysine, and arginine residues At neutral pH, the linker forms an alpha helix that is stabilized by hydrogen bonds in the i, i + 4 register and thus favors the kinase state. At low pH, protonation of glutamate residues breaks salt bridges, which results in helix destabilization and interruption of signaling. This mechanism inhibits unsaturated fatty acid synthesis and rigidifies the membrane when Bacillus grows in acidic conditions.


Subject(s)
Bacillus subtilis/enzymology , Histidine Kinase/chemistry , Histidine Kinase/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Histidine Kinase/genetics , Hydrogen Bonding , Hydrogen-Ion Concentration , Models, Molecular , Mutation , Protein Domains , Protein Stability , Protein Structure, Secondary , Signal Transduction
6.
Cell Mol Life Sci ; 77(19): 3905-3912, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31802141

ABSTRACT

DesK is a Bacillus thermosensor kinase that is inactive at high temperatures but turns activated when the temperature drops below 25 °C. Surprisingly, the catalytic domain (DesKC) lacking the transmembrane region is more active at higher temperature, showing an inverted regulation regarding DesK. How does the transmembrane region control the catalytic domain, repressing activity at high temperatures, but allowing activation at lower temperatures? By designing a set of temperature minimized sensors that share the same catalytic cytoplasmic domain but differ in number and position of hydrogen-bond (H-bond) forming residues along the transmembrane helix, we are able to tune, invert or disconnect activity from the input signal. By favoring differential H-bond networks, the activation peak could be moved towards lower or higher temperatures. This principle may be involved in regulation of other sensors as environmental physicochemical changes or mutations that modify the transmembrane H-bond pattern can tilt the equilibrium favoring alternative conformations.


Subject(s)
Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Amino Acid Sequence , Bacillus subtilis/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biocatalysis , Catalytic Domain , Dimerization , Humans , Hydrogen Bonding , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mutagenesis, Site-Directed , Protein Conformation, alpha-Helical , Signal Transduction , Temperature
7.
Microbiology (Reading) ; 164(12): 1567-1582, 2018 12.
Article in English | MEDLINE | ID: mdl-30311878

ABSTRACT

Mycobacterium smegmatis is intrinsically resistant to thiacetazone, an anti-tubercular thiourea; however we report here that it causes a mild inhibition in growth in liquid medium. Since mycolic acid biosynthesis was affected, we cloned and expressed Mycobacterium smegmatis mycolic acid methyltransferases, postulated as targets for thiacetazone in other mycobacterial species. During this analysis we identified MSMEG_1350 as the methyltransferase involved in epoxy mycolic acid synthesis since its deletion led to their total loss. Phenotypic characterization of the mutant strain showed colony morphology alterations at all temperatures, reduced growth and a slightly increased susceptibility to SDS, lipophilic and large hydrophilic drugs at 20 °C with little effect at 37 °C. No changes were detected between parental and mutant strains in biofilm formation, sliding motility or sedimentation rate. Intriguingly, we found that several mycobacteriophages severely decreased their ability to form plaques in the mutant strain. Taken together our results prove that, in spite of being a minor component of the mycolic acid pool, epoxy-mycolates are required for a proper assembly and functioning of the cell envelope. Further studies are warranted to decipher the role of epoxy-mycolates in the M. smegmatis cell envelope.


Subject(s)
Bacterial Proteins/genetics , Methyltransferases/genetics , Mycobacteriophages/physiology , Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/virology , Mycolic Acids/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Cell Wall/metabolism , Cold Temperature , Methyltransferases/metabolism , Microbial Viability/drug effects , Microbial Viability/genetics , Mycobacterium smegmatis/physiology , Sequence Deletion
8.
J Enzyme Inhib Med Chem ; 31(6): 1726-30, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27146440

ABSTRACT

During the treatment of tuberculosis infection, oxidative stress due to anti-tubercular drugs may result in tissue inflammation. It was suggested that treatment with antioxidant drugs could be beneficial as an adjunct to anti-tuberculosis drug therapy. Recently our group has shown that several C-glycosides are inhibitors of Mycobacterium tuberculosis ß-carbonic anhydrases (CAs, EC 4.2.1.1). In an effort to develop novel chemotherapeutic agents against tuberculosis, the anti-tubercular and antioxidant activities of a series of C-glycosides containing the phenol or the methoxyaryl moiety were studied. Many compounds showed inhibition of growth of M. tuberculosis H37Rv strain and good antioxidant ability. A glycomimetic incorporating the 3-hydroxyphenyl moiety showed the best activity profile and therefore this functionality represents lead for the development of novel anti-tubercular agents with dual mechanisms of action.


Subject(s)
Antioxidants/pharmacology , Antitubercular Agents/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Mycobacterium tuberculosis/drug effects , Microbial Sensitivity Tests
9.
Chemphyschem ; 16(4): 872-83, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25641205

ABSTRACT

The role of the mobile C-terminal extension present in Rhodobacter capsulatus ferredoxin-NADP(H) reductase (RcFPR) was evaluated using steady-state and dynamic spectroscopies for both intrinsic Trp and FAD in a series of mutants in the absence of NADP(H). Deletion of the six C-terminal amino acids beyond Ala266 was combined with the replacement A266Y to emulate the structure of plastidic reductases. Our results show that these modifications of the wild-type RcFPR produce subtle global conformational changes, but strongly reduce the local rigidity of the FAD-binding pocket, exposing the isoalloxazine ring to the solvent. Thus, the ultrafast charge-transfer quenching of (1) FAD* by the conserved Tyr66 residue was absent in the mutant series, producing enhancement of the excited singlet- and triplet-state properties of FAD. This work highlights the delicate balance of the specific interactions between FAD and the surrounding amino acids, and how the functionality and/or photostability of redox flavoproteins can be modified.


Subject(s)
Ferredoxin-NADP Reductase/genetics , Flavin-Adenine Dinucleotide/chemistry , Photosensitizing Agents/chemistry , Rhodobacter capsulatus/enzymology , Ferredoxin-NADP Reductase/metabolism , Flavin-Adenine Dinucleotide/metabolism , Photochemical Processes , Photosensitizing Agents/metabolism
10.
Biochim Biophys Acta ; 1837(1): 33-43, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24016470

ABSTRACT

To study the role of the mobile C-terminal extension present in bacterial class of plant type NADP(H):ferredoxin reductases during catalysis, we generated a series of mutants of the Rhodobacter capsulatus enzyme (RcFPR). Deletion of the six C-terminal amino acids beyond alanine 266 was combined with the replacement A266Y, emulating the structure present in plastidic versions of this flavoenzyme. Analysis of absorbance and fluorescence spectra suggests that deletion does not modify the general geometry of FAD itself, but increases exposure of the flavin to the solvent, prevents a productive geometry of FAD:NADP(H) complex and decreases the protein thermal stability. Although the replacement A266Y partially coats the isoalloxazine from solvent and slightly restores protein stability, this single change does not allow formation of active charge-transfer complexes commonly present in the wild-type FPR, probably due to restraints of C-terminus pliability. A proton exchange process is deduced from ITC measurements during coenzyme binding. All studied RcFPR variants display higher affinity for NADP(+) than wild-type, evidencing the contribution of the C-terminus in tempering a non-productive strong (rigid) interaction with the coenzyme. The decreased catalytic rate parameters confirm that the hydride transfer from NADPH to the flavin ring is considerably hampered in the mutants. Although the involvement of the C-terminal extension from bacterial FPRs in stabilizing overall folding and bent-FAD geometry has been stated, the most relevant contributions to catalysis are modulation of coenzyme entrance and affinity, promotion of the optimal geometry of an active complex and supply of a proton acceptor acting during coenzyme binding.


Subject(s)
Catalysis , Coenzymes/chemistry , Flavin-Adenine Dinucleotide/chemistry , NADH, NADPH Oxidoreductases/chemistry , Rhodobacter capsulatus/enzymology , Amino Acid Sequence , Binding Sites , Coenzymes/metabolism , Crystallography, X-Ray , Flavin-Adenine Dinucleotide/metabolism , Flavins/chemistry , Flavins/metabolism , Flavodoxin/chemistry , Mutation , NADH, NADPH Oxidoreductases/metabolism , NADP/chemistry , Protein Folding , Protons
11.
Int J Mol Sci ; 14(1): 1152-63, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23303276

ABSTRACT

Analysis of the crystal structure of NifF from Rhodobacter capsulatus and its homologues reported so far reflects the existence of unique structural features in nif flavodoxins: a leucine at the re face of the isoalloxazine, an eight-residue insertion at the C-terminus of the 50's loop and a remarkable difference in the electrostatic potential surface with respect to non-nif flavodoxins. A phylogenetic study on 64 sequences from 52 bacterial species revealed four clusters, including different functional prototypes, correlating the previously defined as "short-chain" with the firmicutes flavodoxins and the "long-chain" with gram-negative species. The comparison of Rhodobacter NifF structure with other bacterial flavodoxin prototypes discloses the concurrence of specific features of these functional electron donors to nitrogenase.


Subject(s)
Flavodoxin/genetics , Genes, Bacterial/genetics , Nitrogen Fixation/genetics , Rhodobacter capsulatus/genetics , Amino Acid Sequence , Binding Sites/genetics , Crystallography, X-Ray , Flavin Mononucleotide/chemistry , Flavodoxin/chemistry , Flavodoxin/classification , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Conformation , Protein Structure, Tertiary , Rhodobacter capsulatus/metabolism , Sequence Homology, Amino Acid , Static Electricity
12.
FEMS Microbiol Lett ; 317(2): 181-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21276048

ABSTRACT

Andean wetlands are characterized by their extreme environmental conditions such as high UV radiation, elevated heavy metal content and salinity. We present here the first study on UV tolerance and antioxidant defense of four Acinetobacter strains: Ver3, Ver5 and Ver7, isolated from Lake Verde, and N40 from Lake Negra, both lakes located 4400 m above sea level. All four isolates displayed higher UV resistance compared with collection strains, with Ver3 and Ver7 being the most tolerant strains not only to UV radiation but also to hydrogen peroxide (H(2)O(2)) and methyl viologen (MV) challenges. A single superoxide dismutase band with similar activity was detected in all studied strains, whereas different electrophoretic pattern and activity levels were observed for catalase. Ver3 and Ver7 displayed 5-15 times higher catalase activity levels than the control strains. Analysis of the response of antioxidant enzymes to UV and oxidative challenges revealed a significant increase in Ver7 catalase activity after H(2)O(2) and MV exposure. Incubation of Ver7 cultures with a catalase inhibitor resulted in a significant decrease of tolerance against UV radiation. We conclude that the high catalase activity displayed by Ver7 isolate could play an important role in UV tolerance.


Subject(s)
Acinetobacter/enzymology , Catalase/metabolism , Ultraviolet Rays , Wetlands , Acinetobacter/radiation effects , Oxidative Stress , Superoxide Dismutase/metabolism
13.
Biochim Biophys Acta ; 1794(2): 199-210, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18973834

ABSTRACT

Ferredoxin-NADP(H) reductases catalyse the reversible hydride/electron exchange between NADP(H) and ferredoxin/flavodoxin, comprising a structurally defined family of flavoenzymes with two distinct subclasses. Those present in Gram-negative bacteria (FPRs) display turnover numbers of 1-5 s(-1) while the homologues of cyanobacteria and plants (FNRs) developed a 100-fold activity increase. We investigated nucleotide interactions and hydride transfer in Rhodobacter capsulatus FPR comparing them to those reported for FNRs. NADP(H) binding proceeds as in FNRs with stacking of the nicotinamide on the flavin, which resulted in formation of charge-transfer complexes prior to hydride exchange. The affinity of FPR for both NADP(H) and 2'-P-AMP was 100-fold lower than that of FNRs. The crystal structure of FPR in complex with 2'-P-AMP and NADP(+) allowed modelling of the adenosine ring system bound to the protein, whereas the nicotinamide portion was either not visible or protruding toward solvent in different obtained crystals. Stabilising contacts with the active site residues are different in the two reductase classes. We conclude that evolution to higher activities in FNRs was partially favoured by modification of NADP(H) binding in the initial complexes through changes in the active site residues involved in stabilisation of the adenosine portion of the nucleotide and in the mobile C-terminus of FPR.


Subject(s)
Bacterial Proteins/chemistry , Ferredoxin-NADP Reductase/chemistry , Ferredoxins/metabolism , Flavodoxin/metabolism , Rhodobacter capsulatus/enzymology , Adenosine/metabolism , Adenosine Diphosphate/metabolism , Bacterial Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray , Ferredoxin-NADP Reductase/metabolism , Kinetics , Models, Molecular , NADP/chemistry , NADP/metabolism , Protein Binding , Protein Conformation , Recombinant Proteins/chemistry
14.
Article in English | MEDLINE | ID: mdl-18453705

ABSTRACT

Flavodoxins are small electron-transfer proteins that contain one molecule of noncovalently bound flavin mononucleotide (FMN). The flavodoxin NifF from the photosynthetic bacterium Rhodobacter capsulatus is reduced by one electron from ferredoxin/flavodoxin:NADP(H) reductase and was postulated to be an electron donor to nitrogenase in vivo. NifF was cloned and overexpressed in Escherichia coli, purified and concentrated for crystallization using the hanging-drop vapour-diffusion method at 291 K. Crystals grew from a mixture of PEG 3350 and PEG 400 at pH 5.5 and belong to the tetragonal space group P4(1)2(1)2, with unit-cell parameters a = b = 66.49, c = 121.32 A. X-ray data sets have been collected to 2.17 A resolution.


Subject(s)
Flavodoxin/chemistry , Nitrogen Fixation , Rhodobacter capsulatus/enzymology , Crystallization , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Ferredoxin-NADP Reductase/metabolism , Flavodoxin/isolation & purification , Flavodoxin/metabolism
15.
J Bacteriol ; 185(10): 3223-7, 2003 May.
Article in English | MEDLINE | ID: mdl-12730184

ABSTRACT

The phototrophic bacterium Rhodobacter capsulatus contains a single, oxygen-responsive superoxide dismutase (SOD(Rc)) homologous to iron-containing superoxide dismutase enzymes. Recombinant SOD(Rc), however, displayed higher activity after refolding with Mn(2+), especially when the pH of the assay mixture was raised. SOD(Rc) isolated from Rhodobacter cells also preferentially contains manganese, but metal discrimination depends on the culture conditions, with iron fractions increasing from 7% in aerobic cultures up to 40% in photosynthetic cultures. Therefore, SOD(Rc) behaves as a Mn-containing dismutase with cambialistic properties.


Subject(s)
Manganese/metabolism , Rhodobacter capsulatus/enzymology , Superoxide Dismutase/chemistry , Superoxide Dismutase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Hydrogen-Ion Concentration , Iron/metabolism , Protein Folding , Protein Structure, Tertiary , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Superoxide Dismutase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...