Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2801: 189-197, 2024.
Article in English | MEDLINE | ID: mdl-38578422

ABSTRACT

The opening of connexin hemichannels (HCs) expressed at the plasma membrane of mammalian cells is regulated by a number of physiological parameters, including extracellular and intracellular Ca2+ ions. Submicromolar variations of the cytosolic Ca2+ concentration ([Ca2+]c) are per se sufficient to trigger extracellular bursts of messenger molecules through connexin HCs, thus mediating paracrine signaling. In this chapter, we present a quantitative method to measure the opening dynamics of connexin HCs expressed in a single HeLa cell upon stimulation by a canonical InsP3-mediated [Ca2+]c transient. The protocol relies on a combination of Ca2+ imaging and patch-clamp techniques. The insights gained from our method are expected to make a significant contribution to understanding the structure-function relationship of connexin HCs. The protocol is also suitable to screen candidate therapeutic compounds to treat connexin-related diseases linked to HC dysfunction.


Subject(s)
Calcium , Connexins , Animals , Humans , Connexins/genetics , Connexins/metabolism , HeLa Cells , Calcium/metabolism , Cytosol/metabolism , Cell Membrane/metabolism , Mammals/metabolism
3.
Elife ; 122023 08 03.
Article in English | MEDLINE | ID: mdl-37535063

ABSTRACT

Gap junction channels (GJCs) mediate intercellular communication by connecting two neighbouring cells and enabling direct exchange of ions and small molecules. Cell coupling via connexin-43 (Cx43) GJCs is important in a wide range of cellular processes in health and disease (Churko and Laird, 2013; Liang et al., 2020; Poelzing and Rosenbaum, 2004), yet the structural basis of Cx43 function and regulation has not been determined until now. Here, we describe the structure of a human Cx43 GJC solved by cryo-EM and single particle analysis at 2.26 Å resolution. The pore region of Cx43 GJC features several lipid-like densities per Cx43 monomer, located close to a putative lateral access site at the monomer boundary. We found a previously undescribed conformation on the cytosolic side of the pore, formed by the N-terminal domain and the transmembrane helix 2 of Cx43 and stabilized by a small molecule. Structures of the Cx43 GJC and hemichannels (HCs) in nanodiscs reveal a similar gate arrangement. The features of the Cx43 GJC and HC cryo-EM maps and the channel properties revealed by molecular dynamics simulations suggest that the captured states of Cx43 are consistent with a closed state.


Subject(s)
Connexin 43 , Gap Junctions , Humans , Cell Communication/physiology , Connexin 43/metabolism , Gap Junctions/metabolism , Ion Channels/physiology
4.
Sci Adv ; 9(35): eadh4890, 2023 09.
Article in English | MEDLINE | ID: mdl-37647412

ABSTRACT

In myelinating Schwann cells, connection between myelin layers is mediated by gap junction channels (GJCs) formed by docked connexin 32 (Cx32) hemichannels (HCs). Mutations in Cx32 cause the X-linked Charcot-Marie-Tooth disease (CMT1X), a degenerative neuropathy without a cure. A molecular link between Cx32 dysfunction and CMT1X pathogenesis is still missing. Here, we describe the high-resolution cryo-electron cryo-myography (cryo-EM) structures of the Cx32 GJC and HC, along with two CMT1X-linked mutants, W3S and R22G. While the structures of wild-type and mutant GJCs are virtually identical, the HCs show a major difference: In the W3S and R22G mutant HCs, the amino-terminal gating helix partially occludes the pore, consistent with a diminished HC activity. Our results suggest that HC dysfunction may be involved in the pathogenesis of CMT1X.


Subject(s)
Charcot-Marie-Tooth Disease , Connexins , Humans , Connexins/genetics , Ion Channels , Charcot-Marie-Tooth Disease/genetics , Gap Junctions/genetics , Gap Junction beta-1 Protein
5.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35890127

ABSTRACT

Exposure to environmental pollutants and endogenous metabolites that induce aryl hydrocarbon receptor (AhR) expression has been suggested to affect cognitive development and, particularly in boys, also motor function. As current knowledge is based on epidemiological and animal studies, in vitro models are needed to better understand the effects of these compounds in the human nervous system at the molecular level. Here, we investigated expression of AhR pathway components and how they are regulated by AhR ligands in human motor neurons. Motor neurons generated from human induced pluripotent stem cells (hiPSCs) were characterized at the molecular level and by electrophysiology. mRNA levels of AhR target genes, CYP1A1 and CYP1B1 (cytochromes P450 1A1/1B1), and AhR signaling components were monitored in hiPSCs and in differentiated neurons following treatment with AhR ligands, 2,3,7,8,-tetrachlodibenzo-p-dioxin (TCDD), L-kynurenine (L-Kyn), and kynurenic acid (KA), by RT-qPCR. Changes in AhR cellular localization and CYP1A1 activity in neurons treated with AhR ligands were also assessed. The neurons we generated express motor neuron-specific markers and are functional. Transcript levels of CYP1B1, AhR nuclear translocators (ARNT1 and ARNT2) and the AhR repressor (AhRR) change with neuronal differentiation, being significantly higher in neurons than hiPSCs. In contrast, CYP1A1 and AhR transcript levels are slightly lower in neurons than in hiPSCs. The response to TCDD treatment differs in hiPSCs and neurons, with only the latter showing significant CYP1A1 up-regulation. In contrast, TCDD slightly up-regulates CYP1B1 mRNA in hiPSCs, but downregulates it in neurons. Comparison of the effects of different AhR ligands on AhR and some of its target genes in neurons shows that L-Kyn and KA, but not TCDD, regulate AhR expression and differently affect CYP1A1 and CYP1B1 expression. Finally, although TCDD does not significantly affect AhR transcript levels, it induces AhR protein translocation to the nucleus and increases CYP1A1 activity. This is in contrast to L-Kyn and KA, which either do not affect or reduce, respectively, CYP1A1 activity. Expression of components of the AhR signaling pathway are regulated with neuronal differentiation and are differently affected by TCDD, suggesting that pluripotent stem cells might be less sensitive to this toxin than neurons. Crucially, AhR signaling is affected differently by TCDD and other AhR ligands in human motor neurons, suggesting that they can provide a valuable tool for assessing the impact of environmental pollutants.

6.
Function (Oxf) ; 3(1): zqab064, 2022.
Article in English | MEDLINE | ID: mdl-35330924

ABSTRACT

The epidermis forms an essential barrier against a variety of insults. The overall goal of this study was to shed light not only on the effects of accidental epidermal injury, but also on the mechanisms that support laser skin resurfacing with intra-epidermal focal laser-induced photodamage, a widespread medical practice used to treat a range of skin conditions. To this end, we selectively photodamaged a single keratinocyte with intense, focused and pulsed laser radiation, triggering Ca2+ waves in the epidermis of live anesthetized mice with ubiquitous expression of a genetically encoded Ca2+ indicator. Waves expanded radially and rapidly, reaching up to eight orders of bystander cells that remained activated for tens of minutes, without displaying oscillations of the cytosolic free Ca2+ concentration ([Formula: see text]). By combining in vivo pharmacological dissection with mathematical modeling, we demonstrate that Ca2+ wave propagation depended primarily on the release of ATP, a prime damage-associated molecular patterns (DAMPs), from the hit cell. Increments of the [Formula: see text] in bystander cells were chiefly due to Ca2+ release from the endoplasmic reticulum (ER), downstream of ATP binding to P2Y purinoceptors. ATP-dependent ATP release though connexin hemichannels (HCs) affected wave propagation at larger distances, where the extracellular ATP concentration was reduced by the combined effect of passive diffusion and hydrolysis due to the action of ectonucleotidases, whereas pannexin channels had no role. Bifurcation analysis suggests basal keratinocytes have too few P2Y receptors (P2YRs) and/or phospholipase C (PLC) to transduce elevated extracellular ATP levels into inositol trisphosphate (IP3) production rates sufficiently large to sustain [Formula: see text] oscillations.


Subject(s)
Calcium Signaling , Calcium , Mice , Animals , Calcium/metabolism , Connexins/metabolism , Skin/metabolism , Adenosine Triphosphate/metabolism
7.
Environ Int ; 158: 106982, 2022 01.
Article in English | MEDLINE | ID: mdl-34781208

ABSTRACT

Perfluoroalkyl substances (PFASs) are synthetic chemicals widely used in industrial and consumer products. The environmental spreading of PFASs raises concerns for their impact on human health. In particular, the bioaccumulation in humans due to environmental exposure has been reported also in total brain samples and PFAS exposure has been associated with neurodevelopmental disorders. In this study we aimed to investigate the specific PFAS bioaccumulation in different brain areas. Our data reported major accumulation in the brainstem region, which is richly populated by dopaminergic neurons (DNs), in brain autopsy samples from people resident in a PFAS-polluted area of Italy. Since DNs are the main source of dopamine (DA) in the mammalian central nervous system (CNS), we evaluated the possible functional consequences of perfluoro-octanoic acid (PFOA) exposure in a human model of DNs obtained by differentiation of human induced pluripotent stem cells (hiPSCs). Particularly, we analyzed the specific effect of the exposure to PFOA for 24 h, at the concentration of 10 ng/ml, at 3 different steps of dopaminergic differentiation: the neuronal commitment phase (DP1), the neuronal precursor phase (DP2) and the mature dopaminergic differentiation phase (DP3). Interestingly, compared to untreated cells, exposure to PFOA was associated with a reduced expression of Tyrosine Hydroxylase (TH) and Neurofilament Heavy (NFH), both markers of dopaminergic maturation at DP2 phase. In addition, cells at DP3 phase exposed to PFOA showed a severe reduction in the expression of the Dopamine Transporter (DAT), functionally involved in pre-synaptic dopamine reuptake. In this proof-of-concept study we show a significant impact of PFOA exposure, mainly on the most sensitive stage of neural dopaminergic differentiation, prompting the way for further investigations more directly relevant to risk assessment of these chemicals.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Induced Pluripotent Stem Cells , Alkanesulfonic Acids/toxicity , Animals , Brain , Caprylates , Dopaminergic Neurons , Fluorocarbons/toxicity , Humans
8.
Int J Mol Sci ; 20(19)2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31597355

ABSTRACT

Macrophages are highly plastic and dynamic cells that exert much of their function through phagocytosis. Phagocytosis depends on a coordinated, finely tuned, and compartmentalized regulation of calcium concentrations. We examined the role of mitochondrial calcium uptake and mitochondrial calcium uniporter (MCU) in macrophage polarization and function. In primary cultures of human monocyte-derived macrophages, calcium uptake in mitochondria was instrumental for alternative (M2) macrophage polarization. Mitochondrial calcium uniporter inhibition with KB-R7943 or MCU knockdown, which prevented mitochondrial calcium uptake, reduced M2 polarization, while not affecting classical (M1) polarization. Challenging macrophages with E. coli fragments induced spikes of mitochondrial calcium concentrations, which were prevented by MCU inhibition or silencing. In addition, mitochondria remodelled in M2 macrophages during phagocytosis, especially close to sites of E. coli internalization. Remarkably, inhibition or knockdown of MCU significantly reduced the phagocytic capacity of M2 macrophages. KB-R7943, which also inhibits the membrane sodium/calcium exchanger and Complex I, reduced mitochondria energization and cellular ATP levels, but such effects were not observed with MCU silencing. Therefore, phagocytosis inhibition by MCU knockdown depended on the impaired mitochondrial calcium buffering rather than changes in mitochondrial and cellular energy status. These data uncover a new role for MCU in alternative macrophage polarization and phagocytic activity.


Subject(s)
Calcium/metabolism , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Mitochondria/metabolism , Phagocytosis/immunology , Adolescent , Adult , Calcium Signaling , Gene Silencing , Humans , Immunity, Innate , Male , Young Adult
9.
Front Mol Neurosci ; 11: 227, 2018.
Article in English | MEDLINE | ID: mdl-30042657

ABSTRACT

Connexin 32 (Cx32) is a fundamental protein in the peripheral nervous system (PNS) as its mutations cause the X-linked form of Charcot-Marie-Tooth disease (CMT1X), the second most common form of hereditary motor and sensory neuropathy and a demyelinating disease for which there is no effective therapy. Since mutations of the GJB1 gene encoding Cx32 were first reported in 1993, over 450 different mutations associated with CMT1X including missense, frameshift, deletion and non-sense ones have been identified. Despite the availability of a sizable number of studies focusing on normal and mutated Cx32 channel properties, the crucial role played by Cx32 in the PNS has not yet been elucidated, as well as the molecular pathogenesis of CMT1X. Is Cx32 fundamental during a particular phase of Schwann cell (SC) life? Are Cx32 paired (gap junction, GJ) channels in myelinated SCs important for peripheral nerve homeostasis? The attractive hypothesis that short coupling of adjacent myelin layers by Cx32 GJs is required for efficient diffusion of K+ and signaling molecules is still debated, while a growing body of evidence is supporting other possible functions of Cx32 in the PNS, mainly related to Cx32 unpaired channels (hemichannels), which could be involved in a purinergic-dependent pathway controlling myelination. Here we review the intriguing puzzle of findings about Cx32 function and dysfunction, discussing possible directions for future investigation.

10.
Proc Natl Acad Sci U S A ; 115(28): E6497-E6506, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29941564

ABSTRACT

Evidence supporting the heterogeneity in cAMP and PKA signaling is rapidly accumulating and has been largely attributed to the localization or activity of adenylate cyclases, phosphodiesterases, and A-kinase-anchoring proteins in different cellular subcompartments. However, little attention has been paid to the possibility that, despite homogeneous cAMP levels, a major heterogeneity in cAMP/PKA signaling could be generated by the spatial distribution of the final terminators of this cascade, i.e., the phosphatases. Using FRET-based sensors to monitor cAMP and PKA-dependent phosphorylation in the cytosol and outer mitochondrial membrane (OMM) of primary rat cardiomyocytes, we demonstrate that comparable cAMP increases in these two compartments evoke higher levels of PKA-dependent phosphorylation in the OMM. This difference is most evident for small, physiological increases of cAMP levels and with both OMM-located probes and endogenous OMM proteins. We demonstrate that this disparity depends on differences in the rates of phosphatase-dependent dephosphorylation of PKA targets in the two compartments. Furthermore, we show that the activity of soluble phosphatases attenuates PKA-driven activation of the cAMP response element-binding protein while concurrently enhancing PKA-dependent mitochondrial elongation. We conclude that phosphatases can sculpt functionally distinct cAMP/PKA domains even in the absence of gradients or microdomains of this messenger. We present a model that accounts for these unexpected results in which the degree of PKA-dependent phosphorylation is dictated by both the subcellular distribution of the phosphatases and the different accessibility of membrane-bound and soluble phosphorylated substrates to the cytosolic enzymes.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Membrane Microdomains/enzymology , Membrane Proteins/metabolism , Mitochondrial Membranes/enzymology , Mitochondrial Proteins/metabolism , Animals , Cyclic AMP-Dependent Protein Kinases/genetics , Fluorescence Resonance Energy Transfer , HeLa Cells , Humans , Membrane Microdomains/genetics , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Rats , Rats, Sprague-Dawley
11.
Acta Diabetol ; 55(6): 593-601, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29546579

ABSTRACT

AIMS: Diabetes is associated with an excess release of neutrophil extracellular traps (NETs) and an enhanced NETosis, a neutrophil cell death programme instrumental to anti-microbial defences, but also involved in tissue damage. We herein investigated whether the antidiabetic drug metformin protects against NETosis. METHODS: We measured NET components in the plasma of patients with pre-diabetes who were randomized to receive metformin or placebo for 2 months. To control for the effect on glucose, we also measured NET components in the plasma of patients with type 2 diabetes before and after treatment with insulin or dapagliflozin. In vitro, we used static and dynamic imaging with advanced live confocal two-photon microscopy to evaluate the effects of metformin on cellular events during NETosis. We examined putative molecular mechanisms by monitoring chromatin decondensation and DNA release in vitro. RESULTS: Metformin, as compared to placebo, significantly reduced the concentrations of NET components elastase, proteinase-3, histones and double strand DNA, whereas glucose control with insulin or dapagliflozin exerted no significant effect. In vitro, metformin prevented pathologic changes in nuclear dynamics and DNA release, resulting in a blunted NETosis in response to phorbol myristate acetate and calcium influx. Metformin prevented membrane translocation of PKC-ßII and activation of NADPH oxidase in neutrophils, both of which diminished the NETosis response. CONCLUSIONS: Metformin treatment reduced the concentrations of NET components independently from glucose control. This effect was reproducible in vitro and was related to the inhibitory effect exerted by metformin on the PKC-NADPH oxidase pathway.


Subject(s)
Biomarkers/blood , Diabetes Mellitus, Type 2/metabolism , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Hypoglycemic Agents/pharmacology , Inflammation/prevention & control , Metformin/pharmacology , Adult , Benzhydryl Compounds/administration & dosage , Blood Glucose/drug effects , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Drug Therapy, Combination , Female , Glucosides/administration & dosage , Humans , Hypoglycemic Agents/therapeutic use , Inflammation/etiology , Inflammation/metabolism , Male , Metformin/therapeutic use , Middle Aged , Neutrophils/metabolism , Neutrophils/pathology
12.
Neurosci Lett ; 663: 18-24, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29452611

ABSTRACT

Hair cells of the inner ear detect sound stimuli, inertial or gravitational forces by deflection of their apical stereocilia. A small number of stereociliary cation-selective mechanotransduction (MET) channels admit K+ and Ca2+ ions into the cytoplasm promoting hair cell membrane depolarization and, consequently, neurotransmitter release at the cell basolateral pole. Ca2+ influx into the stereocilia compartment is counteracted by the unusual w/a splicing variant of plasma-membrane calcium-pump isoform 2 (PMCA2) which, unlike other PMCA2 variants, increases only marginally its activity in response to a rapid variation of the cytoplasmic free Ca2+ concentration ([Ca2+]c). Missense mutations of PMCA2w/a cause deafness and loss of balance in humans. Mouse models in which the pump is genetically ablated or mutated show hearing and balance impairment, which correlates with defects in homeostatic regulation of stereociliary [Ca2+]c, decreased sensitivity of mechanotransduction channels to hair bundle displacement and progressive degeneration of the organ of Corti. These results highlight a critical role played by the PMCA2w/a pump in the control of hair cell function and survival, and provide mechanistic insight into the etiology of deafness and vestibular disorders.


Subject(s)
Hearing Loss, Sensorineural/genetics , Mutation/genetics , Plasma Membrane Calcium-Transporting ATPases/genetics , Animals , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , Hair Cells, Auditory, Inner/pathology , Hearing Loss, Sensorineural/pathology , Humans , Plasma Membrane Calcium-Transporting ATPases/chemistry , Protein Isoforms/genetics
13.
Hum Mol Genet ; 27(1): 80-94, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29077882

ABSTRACT

Mutations of the GJB1 gene encoding connexin 32 (Cx32) cause the X-linked form of Charcot-Marie-Tooth disease (CMTX1), a demyelinating peripheral neuropathy for which there is no cure. A growing body of evidence indicates that ATP release through Cx32 hemichannels in Schwann cells could be critical for nerve myelination, but it is unknown if CMTX1 mutations alter the cytosolic Ca2+-dependent gating mechanism that controls Cx32 hemichannel opening and ATP release. The current study uncovered that loss of the C-terminus in Cx32 (R220X mutation), which causes a severe CMTX1 phenotype, inhibits hemichannel opening during a canonical IP3-mediated increase in cytosolic Ca2+ in HeLa cells. Interestingly, the gating function of R220X hemichannels was completely restored by both the intracellular and extracellular application of a peptide that mimics the Cx32 cytoplasmic loop. All-atom molecular dynamics simulations suggest that loss of the C-terminus in the mutant hemichannel triggers abnormal fluctuations of the cytoplasmic loop which are prevented by binding to the mimetic peptide. Experiments that stimulated R220X hemichannel opening by cell depolarization displayed reduced voltage sensitivity with respect to wild-type hemichannels which was explained by loss of subconductance states at the single channel level. Finally, experiments of intercellular diffusion mediated by wild-type or R220X gap junction channels revealed similar unitary permeabilities to ions, signalling molecules (cAMP) or larger solutes (Lucifer yellow). Taken together, our findings support the hypothesis that paracrine signalling alteration due to Cx32 hemichannel dysfunction underlies CMTX1 pathogenesis and suggest a candidate molecule for novel studies investigating a therapeutic approach.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Charcot-Marie-Tooth Disease/metabolism , Connexins/genetics , Connexins/metabolism , Mutation , Adenosine Triphosphate/metabolism , Calcium Channels/genetics , Charcot-Marie-Tooth Disease/genetics , Connexins/antagonists & inhibitors , Connexins/chemistry , Cytosol/metabolism , Gap Junctions/genetics , Gap Junctions/metabolism , HeLa Cells , Humans , Ion Channel Gating/physiology , Membrane Potentials/physiology , Models, Molecular , Patch-Clamp Techniques , Schwann Cells/metabolism , Transfection , Gap Junction beta-1 Protein
14.
Cell Calcium ; 70: 117-126, 2018 03.
Article in English | MEDLINE | ID: mdl-28578918

ABSTRACT

In mammals, the sense of hearing arises through a complex sequence of morphogenetic events that drive the sculpting of the auditory sensory epithelium into its terminally functional three-dimensional shape. While the majority of the underlying mechanisms remain unknown, it has become increasingly clear that Ca2+ signaling is at center stage and plays numerous fundamental roles both in the sensory hair cells and in the matrix of non-sensory, epithelial and supporting cells, which embed them and are tightly interconnected by a dense network of gap junctions formed by connexin 26 (Cx26) and connexin 30 (Cx30) protein subunits. In this review, we discuss the intricate interplay between Ca2+ signaling, connexin expression and function, apoptosis and autophagy in the crucial steps that lead to hearing acquisition.


Subject(s)
Apoptosis , Autophagy , Calcium Signaling , Cochlea/embryology , Cochlea/metabolism , Hearing/physiology , Animals , Hair Cells, Auditory/metabolism , Humans
15.
Elife ; 62017 05 02.
Article in English | MEDLINE | ID: mdl-28463107

ABSTRACT

cAMP/PKA signalling is compartmentalised with tight spatial and temporal control of signal propagation underpinning specificity of response. The cAMP-degrading enzymes, phosphodiesterases (PDEs), localise to specific subcellular domains within which they control local cAMP levels and are key regulators of signal compartmentalisation. Several components of the cAMP/PKA cascade are located to different mitochondrial sub-compartments, suggesting the presence of multiple cAMP/PKA signalling domains within the organelle. The function and regulation of these domains remain largely unknown. Here, we describe a novel cAMP/PKA signalling domain localised at mitochondrial membranes and regulated by PDE2A2. Using pharmacological and genetic approaches combined with real-time FRET imaging and high resolution microscopy, we demonstrate that in rat cardiac myocytes and other cell types mitochondrial PDE2A2 regulates local cAMP levels and PKA-dependent phosphorylation of Drp1. We further demonstrate that inhibition of PDE2A, by enhancing the hormone-dependent cAMP response locally, affects mitochondria dynamics and protects from apoptotic cell death.


Subject(s)
Apoptosis , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Dynamins/metabolism , Mitochondria/metabolism , Mitochondria/ultrastructure , Animals , Cell Line , Humans , Mice , Phosphorylation , Protein Processing, Post-Translational , Rats
16.
Cardiovasc Res ; 113(8): 984-995, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28339694

ABSTRACT

AIMS: Spontaneous Ca2+ waves in cardiomyocytes are potentially arrhythmogenic. A powerful controller of Ca2+ waves is the cytoplasmic H+ concentration ([H+]i), which fluctuates spatially and temporally in conditions such as myocardial ischaemia/reperfusion. H+-control of Ca2+ waves is poorly understood. We have therefore investigated how [H+]i co-ordinates their initiation and frequency. METHODS AND RESULTS: Spontaneous Ca2+ waves were imaged (fluo-3) in rat isolated ventricular myocytes, subjected to modest Ca2+-overload. Whole-cell intracellular acidosis (induced by acetate-superfusion) stimulated wave frequency. Pharmacologically blocking sarcolemmal Na+/H+ exchange (NHE1) prevented this stimulation, unveiling inhibition by H+. Acidosis also increased Ca2+ wave velocity. Restricting acidosis to one end of a myocyte, using a microfluidic device, inhibited Ca2+ waves in the acidic zone (consistent with ryanodine receptor inhibition), but stimulated wave emergence elsewhere in the cell. This remote stimulation was absent when NHE1 was selectively inhibited in the acidic zone. Remote stimulation depended on a locally evoked, NHE1-driven rise of [Na+]i that spread rapidly downstream. CONCLUSION: Acidosis influences Ca2+ waves via inhibitory Hi+ and stimulatory Nai+ signals (the latter facilitating intracellular Ca2+-loading through modulation of sarcolemmal Na+/Ca2+ exchange activity). During spatial [H+]i-heterogeneity, Hi+-inhibition dominates in acidic regions, while rapid Nai+ diffusion stimulates waves in downstream, non-acidic regions. Local acidosis thus simultaneously inhibits and stimulates arrhythmogenic Ca2+-signalling in the same myocyte. If the principle of remote H+-stimulation of Ca2+ waves also applies in multicellular myocardium, it raises the possibility of electrical disturbances being driven remotely by adjacent ischaemic areas, which are known to be intensely acidic.


Subject(s)
Acidosis/chemically induced , Calcium/metabolism , Myocardial Ischemia/metabolism , Animals , Cations, Divalent , Heart Ventricles/metabolism , Hydrogen-Ion Concentration , Male , Myocardial Contraction/physiology , Myocardial Reperfusion/methods , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Rats, Sprague-Dawley , Sodium/metabolism
17.
Methods Mol Biol ; 1427: 223-41, 2016.
Article in English | MEDLINE | ID: mdl-27259930

ABSTRACT

Confocal imaging of fluorescent probes offers a powerful, non-invasive tool which enables data collection from vast population of cells at high spatial and temporal resolution. Spinning disk confocal microscopy parallelizes the imaging process permitting the study of dynamic events in populations of living cells on the millisecond time scale. Several spinning disk microscopy solutions are commercially available, however these are often poorly configurable and relatively expensive. This chapter describes a procedure to assemble a cost-effective homemade spinning disk system for fluorescence microscopy, which is highly flexible and easily configurable. We finally illustrate a reliable protocol to obtain high-quality Ca(2+) and voltage imaging data from cochlear preparations.


Subject(s)
Ear, Inner/ultrastructure , Animals , Calcium Channels/metabolism , Ear, Inner/metabolism , Mice , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods
18.
Oncotarget ; 6(12): 10161-74, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25868859

ABSTRACT

Ionizing and nonionizing radiation affect not only directly targeted cells but also surrounding "bystander" cells. The underlying mechanisms and therapeutic role of bystander responses remain incompletely defined. Here we show that photosentizer activation in a single cell triggers apoptosis in bystander cancer cells, which are electrically coupled by gap junction channels and support the propagation of a Ca2+ wave initiated in the irradiated cell. The latter also acts as source of nitric oxide (NO) that diffuses to bystander cells, in which NO levels are further increased by a mechanism compatible with Ca(2+)-dependent enzymatic production. We detected similar signals in tumors grown in dorsal skinfold chambers applied to live mice. Pharmacological blockade of connexin channels significantly reduced the extent of apoptosis in bystander cells, consistent with a critical role played by intercellular communication, Ca2+ and NO in the bystander effects triggered by photodynamic therapy.


Subject(s)
Calcium/metabolism , Gap Junctions/metabolism , Nitric Oxide/metabolism , Photochemotherapy/methods , Animals , Apoptosis/physiology , Cell Communication , Connexins/metabolism , Humans , Mice , Signal Transduction
19.
Front Physiol ; 5: 85, 2014.
Article in English | MEDLINE | ID: mdl-24624091

ABSTRACT

Mutations of the GJB2 gene encoding the connexin 26 (Cx26) gap junction protein, which is widely expressed in the inner ear, are the primary cause of hereditary non-syndromic hearing loss in several populations. The deafness-associated single amino acid substitution of methionine 34 (M34) in the first transmembrane helix (TM1) with a threonine (T) ensues in the production of mutant Cx26M34T channels that are correctly synthesized and assembled in the plasma membrane. However, mutant channels overexpressed in HeLa cells retain only 11% of the wild type unitary conductance. Here we extend and rationalize those findings by comparing wild type Cx26 (Cx26WT) and Cx26M34T mutant channels in silico, using molecular dynamics simulations. Our results indicate that the quaternary structure of the Cx26M34T hemichannel is altered at the level of the pore funnel due to the disruption of the hydrophobic interaction between M34 and tryptophan 3 (W3) in the N-terminal helix (NTH). Our simulations also show that external force stimuli applied to the NTHs can detach them from the inner wall of the pore more readily in the mutant than in the wild type hemichannel. These structural alterations significantly increase the free energy barrier encountered by permeating ions, correspondingly decreasing the unitary conductance of the Cx26M34T hemichannel. Our results accord with the proposal that the mutant resides most of the time in a low conductance state. However, the small displacement of the NTHs in our Cx26M34T hemichannel model is not compatible with the formation of a pore plug as in the related Cx26M34A mutant.

20.
J Mol Cell Biol ; 5(4): 266-76, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23918284

ABSTRACT

The Golgi apparatus (GA) is a dynamic intracellular Ca(2+) store endowed with complex Ca(2+) homeostatic mechanisms in part distinct from those of the endoplasmic reticulum (ER). We describe the generation of a novel fluorescent Ca(2+) probe selectively targeted to the medial-Golgi. We demonstrate that in the medial-Golgi: (i) Ca(2+) accumulation takes advantage of two distinct pumps, the sarco/endoplasmic reticulum Ca(2+) ATPase and the secretory pathway Ca(2+) ATPase1; (ii) activation of IP3 or ryanodine receptors causes Ca(2+) release, while no functional two-pore channel was found; (iii) luminal Ca(2+) concentration appears higher than that of the trans-Golgi, but lower than that of the ER, suggesting the existence of a cis- to trans-Golgi Ca(2+) concentration gradient. Thus, the GA represents a Ca(2+) store of high complexity where, despite the continuous flow of membranes and luminal contents, each sub-compartment maintains its Ca(2+) identity with specific Ca(2+) homeostatic characteristics. The functional role of such micro-heterogeneity in GA Ca(2+) handling is discussed.


Subject(s)
Calcium Signaling , Calcium/metabolism , Golgi Apparatus/metabolism , Animals , Calcium-Transporting ATPases/metabolism , Calcium-Transporting ATPases/physiology , Cell Line , Cricetinae , Endoplasmic Reticulum/metabolism , Golgi Apparatus/ultrastructure , HeLa Cells , Homeostasis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...