Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Transl Med UniSa ; 14: 15-20, 2016 May.
Article in English | MEDLINE | ID: mdl-27326391

ABSTRACT

One of the issues regarding in vitro study of bone resorption is the synthesis of a bone-like biomaterial forming a thin layer onto either glass or plastic. The synthesis of a bone-like material suitable for in vitro studies can be valuable both to investigate osteoclast differentiation, that in vivo proceeds within the local microenvironment of bone and to understand how its presence triggers activation of macrophages present in situ when bone is damaged (a scenario that can occur for example in case of bone fracture). Despite the intensive studies committed to recreate synthetic bone analogues, the most used substrates for in vitro studies on bone resorption are slices of bone or dentine. Therefore morphological investigations (i.e. fluorescence analysis and phase contrast) are strongly compromised due to the thickness of the bone analogue. In the present study, with the aim to guarantee a versatile (and easy to be made) substrate, that could be suitable to study cell adhesion and morphology by epifluorescence, phase contrast and TEM, we developed a biomaterial containing a calcium phosphate salt and type I collagen. This material (made specifically for in vitro studies) forms a very thin layer that allowed to merge the morphological information derived from phase-contrast and epifluorescence observation, making possible the observation of the interface between cell and matrix. Moreover the electron microscopy evaluation of the endocytosis performed on cell differentiated could be more suitable because sample does not need the process of demineralization.

2.
J Gen Virol ; 93(Pt 7): 1474-1482, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22442113

ABSTRACT

Although inserting exogenous viral genome segments into rotavirus particles remains a hard challenge, this study describes the in vivo incorporation of a recombinant viral capsid protein (VP6) into newly assembled rotavirus particles. In vivo biotinylation technology was exploited to biotinylate a recombinant VP6 protein fused to a 15 aa biotin-acceptor peptide (BAP) by the bacterial biotin ligase BirA contextually co-expressed in mammalian cells. To avoid toxicity of VP6 overexpression, a stable HEK293 cell line was constructed with tetracycline-inducible expression of VP6-BAP and constitutive expression of BirA. Following tetracycline induction and rotavirus infection, VP6-BAP was biotinylated, recruited into viroplasms and incorporated into newly assembled virions. The biotin molecules in the capsid allowed the use of streptavidin-coated magnetic beads as a purification technique instead of CsCl gradient ultracentrifugation. Following transfection, double-layered particles attached to beads were able to induce viroplasm formation and to generate infective viral progeny.


Subject(s)
Biotinylation/methods , Rotavirus/growth & development , Staining and Labeling/methods , Virology/methods , Virus Assembly , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Line , Humans , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombination, Genetic , Rotavirus/genetics , Rotavirus/physiology
3.
Leukemia ; 26(1): 91-100, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21968881

ABSTRACT

The mammalian target of rapamycin (mTOR) serine/threonine kinase is the catalytic subunit of two multi-protein complexes, referred to as mTORC1 and mTORC2. Signaling downstream of mTORC1 has a critical role in leukemic cell biology by controlling mRNA translation of genes involved in both cell survival and proliferation. mTORC1 activity can be downmodulated by upregulating the liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) pathway. Here, we have explored the therapeutic potential of the anti-diabetic drug, metformin (an LKB1/AMPK activator), against both T-cell acute lymphoblastic leukemia (T-ALL) cell lines and primary samples from T-ALL patients displaying mTORC1 activation. Metformin affected T-ALL cell viability by inducing autophagy and apoptosis. However, it was much less toxic against proliferating CD4(+) T-lymphocytes from healthy donors. Western blot analysis demonstrated dephosphorylation of mTORC1 downstream targets. Unlike rapamycin, we found a marked inhibition of mRNA translation in T-ALL cells treated with metformin. Remarkably, metformin targeted the side population of T-ALL cell lines as well as a putative leukemia-initiating cell subpopulation (CD34(+)/CD7(-)/CD4(-)) in patient samples. In conclusion, metformin displayed a remarkable anti-leukemic activity, which emphasizes future development of LKB1/AMPK activators as clinical candidates for therapy in T-ALL.


Subject(s)
Adenylate Kinase/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proteins/metabolism , Signal Transduction , Apoptosis , Base Sequence , Cell Line, Tumor , DNA Primers , Flow Cytometry , Humans , Mechanistic Target of Rapamycin Complex 1 , Metformin/pharmacology , Multiprotein Complexes , Phosphorylation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Biosynthesis/drug effects , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , TOR Serine-Threonine Kinases
4.
Leukemia ; 25(5): 781-91, 2011 May.
Article in English | MEDLINE | ID: mdl-21331075

ABSTRACT

The mammalian Target Of Rapamycin (mTOR) serine/threonine kinase belongs to two multi-protein complexes, referred to as mTORC1 and mTORC2. mTOR-generated signals have critical roles in leukemic cell biology by controlling mRNA translation of genes that promote proliferation and survival. However, allosteric inhibition of mTORC1 by rapamycin has only modest effects in T-cell acute lymphoblastic leukemia (T-ALL). Recently, ATP-competitive inhibitors specific for the mTOR kinase active site have been developed. In this study, we have explored the therapeutic potential of active-site mTOR inhibitors against both T-ALL cell lines and primary samples from T-ALL patients displaying activation of mTORC1 and mTORC2. The inhibitors affected T-ALL cell viability by inducing cell-cycle arrest in G(0)/G(1) phase, apoptosis and autophagy. Western blot analysis demonstrated a Ser 473 Akt dephosphorylation (indicative of mTORC2 inhibition) and a dephosphorylation of mTORC1 downstream targets. Unlike rapamycin, we found a marked inhibition of mRNA translation in T-ALL cell lines treated with active-site mTOR inhibitors. The inhibitors strongly synergized with both vincristine and the Bcl-2 inhibitor, ABT-263. Remarkably, the drugs targeted a putative leukemia-initiating cell sub-population (CD34(+)/CD7(-)/CD4(-)) in patient samples. In conclusion, the inhibitors displayed remarkable anti-leukemic activity, which emphasizes their future development as clinical candidates for therapy in T-ALL.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Kinase Inhibitors/pharmacology , Proteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Animals , Blotting, Western , Catalytic Domain , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Flow Cytometry , Humans , Immunosuppressive Agents/pharmacology , Mechanistic Target of Rapamycin Complex 1 , Mice , Multiprotein Complexes , Phosphorylation/drug effects , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proteins/metabolism , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sirolimus/pharmacology , TOR Serine-Threonine Kinases , Transcription Factors/metabolism
5.
Eur J Histochem ; 54(1): e6, 2010 Mar 08.
Article in English | MEDLINE | ID: mdl-20353913

ABSTRACT

Bone is continuously repaired and remodelled through well-coordinated activity of osteoblasts that form new bone and osteoclasts, which resorb it. Osteoblasts synthesize and secrete two key molecules that are important for osteoclast differentiation, namely the ligand for the receptor of activator of nuclear factor kappaB (RANKL) and its decoy receptor osteoprotegerin (OPG). Active membrane transport is a typical feature of the resorbing osteoclast during bone resorption. Normally, one resorption cycle takes several hours as observed by monitoring actin ring formation and consequent disappearance in vitro. During these cyclic changes, the cytoskeleton undergoes remarkable dynamic rearrangement. Active cells show a continuous process of exocytosis that plays an essential role in transport of membrane components, soluble molecules and receptor-mediated ligands thus allowing them to communicate with the environment. The processes that govern intracellular transport and trafficking in mature osteoclasts are poorly known. The principal methodological problem that have made these studies difficult is a physiological culture of osteoclasts that permit observing the vesicle apparatus in conditions similar to the in vivo conditions. In the present study we have used a number of morphological approaches to characterize the composition, formation and the endocytic and biosynthetic pathways that play roles in dynamics of differentiation of mature bone resorbing cells using a tri-dimensional system of physiologic coculture.


Subject(s)
Cell Differentiation , Cell Membrane/metabolism , Clathrin/metabolism , Endocytosis/physiology , Osteoclasts/metabolism , RANK Ligand/metabolism , Animals , Cells, Cultured , Coculture Techniques , Fluorescent Antibody Technique , Immunoblotting , Macrophages/cytology , Macrophages/metabolism , Mice
6.
Eur J Histochem ; 51(3): 203-12, 2007.
Article in English | MEDLINE | ID: mdl-17921116

ABSTRACT

The effect of pulsed electromagnetic fields (PEMFs) on the proliferation and survival of matrix-induced autologous chondrocyte implantation (MACI)-derived cells was studied to ascertain the healing potential of PEMFs. MACI-derived cells were taken from cartilage biopsies 6 months after surgery and cultured. No dedifferentiation towards the fibro- blastic phenotype occurred, indicating the success of the surgical implantation. The MACI-derived cultured chondrocytes were exposed to 12 h/day (short term) or 4 h/day (long term) PEMFs exposure (magnetic field intensity, 2 mT; frequency, 75 Hz) and proliferation rate determined by flow cytometric analysis. The PEMFs exposure elicited a significant increase of cell number in the SG2M cell cycle phase. Moreover, cells isolated from MACI scaffolds showed the presence of collagen type II, a typical marker of chondrocyte functionality. The results show that MACI membranes represent an optimal bioengineering device to support chondrocyte growth and proliferation in surgical implants. The surgical implant of MACI combined with physiotherapy is suggested as a promising approach for a faster and safer treatment of cartilage traumatic lesions.


Subject(s)
Cartilage, Articular/pathology , Chondrocytes/radiation effects , Electromagnetic Fields , Knee Injuries/pathology , Knee Joint/pathology , Cartilage, Articular/surgery , Cell Proliferation , Cell Survival/radiation effects , Cells, Cultured , Chondrocytes/pathology , Chondrocytes/transplantation , Humans , Immunohistochemistry , Knee Injuries/surgery , Knee Joint/surgery
7.
Histol Histopathol ; 22(5): 573-9, 2007 05.
Article in English | MEDLINE | ID: mdl-17330812

ABSTRACT

There exists an active lipid metabolism in the nucleus, which is regulated differentially from the lipid metabolism taking place elsewhere in the cell. Evidence has been accumulated that nuclear lipid metabolism is closely involved in a variety of cell responses, including proliferation, differentiation, and apoptosis. A fundamental lipid second messenger which is generated in the nucleus is diacylglycerol, that is mainly known for its role as an activator of some protein kinase C isoforms. Diacylglycerol kinases attenuate diacylglycerol signaling by converting this lipid to phosphatidic acid, which also has signaling functions. Ten mammalian diacylglycerol kinase isoforms have been cloned so far, and some of them are found also in the nucleus, either as resident proteins or after migration from cytoplasm in response to various agonists. Experiments using cultured cells have demonstrated that nuclear diacylglycerol kinases have prominent roles in cell cycle regulation and differentiation. In this review, the emerging roles played by diacylglycerol kinases in the nucleus, such as the control of G1/S phase transition, are discussed.


Subject(s)
Cell Nucleus/enzymology , Diacylglycerol Kinase/metabolism , Signal Transduction , Animals , Cell Differentiation/physiology , Cell Proliferation , Humans , Isoenzymes/metabolism , Lipid Metabolism
8.
Leukemia ; 21(5): 886-96, 2007 May.
Article in English | MEDLINE | ID: mdl-17361225

ABSTRACT

Insulin-like growth factor-I (IGF-I) and its receptor (IGF-IR) have been implicated in the pathophysiology of many human cancers, including those of hematopoietic lineage. We investigated the therapeutic potential of the novel IGF-IR tyrosine kinase activity inhibitor, NVP-AEW541, on human acute myeloid leukemia (AML) cells. NVP-AEW541 was tested on a HL60 cell subclone, which is dependent on autocrine secretion of IGF-I for survival and drug resistance, as well as primary drug resistant leukemia cells. NVP-AEW541 treatment (24 h) induced dephosphorylation of IGF-IR. NVP-AEW541 also caused Akt dephosphorylation and changes in the expression of key regulatory proteins of the cell cycle. At longer incubation times (48 h), NVP-AEW541-induced apoptotic cell death, as demonstrated by caspase-3 cleavage. Apoptosis was accompanied by decreased expression of anti-apoptotic proteins. NVP-AEW541 enhanced sensitivity of HL60 cells to either cytarabine or etoposide. Moreover, NVP-AEW541 reduced the clonogenic capacity of AML CD34(+) cells cultured in the presence of IGF-I. Chemoresistant AML blasts displayed enhanced IGF-I secretion, and were sensitized to etoposide-induced apoptosis by NVP-AEW541. Our findings indicate that NVP-AEW541 might be a promising therapeutic agent for the treatment of those AML cases characterized by IGF-I autocrine secretion.


Subject(s)
Apoptosis/drug effects , Insulin-Like Growth Factor I/metabolism , Leukemia, Myeloid, Acute/drug therapy , Pyrimidines/pharmacology , Pyrroles/pharmacology , Receptor, IGF Type 1/antagonists & inhibitors , Cyclin-Dependent Kinase Inhibitor p27 , Cytarabine/pharmacology , Down-Regulation , Etoposide/pharmacology , HL-60 Cells , Humans , Intracellular Signaling Peptides and Proteins/analysis , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Receptor, IGF Type 1/metabolism
9.
Leukemia ; 20(6): 911-28, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16642045

ABSTRACT

The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is crucial to many aspects of cell growth, survival and apoptosis, and its constitutive activation has been implicated in the both the pathogenesis and the progression of a wide variety of neoplasias. Hence, this pathway is an attractive target for the development of novel anticancer strategies. Recent studies showed that PI3K/Akt signaling is frequently activated in acute myeloid leukemia (AML) patient blasts and strongly contributes to proliferation, survival and drug resistance of these cells. Upregulation of the PI3K/Akt network in AML may be due to several reasons, including FLT3, Ras or c-Kit mutations. Small molecules designed to selectively target key components of this signal transduction cascade induce apoptosis and/or markedly increase conventional drug sensitivity of AML blasts in vitro. Thus, inhibitory molecules are currently being developed for clinical use either as single agents or in combination with conventional therapies. However, the PI3K/Akt pathway is important for many physiological cellular functions and, in particular, for insulin signaling, so that its blockade in vivo might cause severe systemic side effects. In this review, we summarize the existing knowledge about PI3K/Akt signaling in AML cells and we examine the rationale for targeting this fundamental signal transduction network by means of selective pharmacological inhibitors.


Subject(s)
Leukemia, Myeloid/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Acute Disease , Humans , Leukemia, Myeloid/drug therapy , Models, Biological , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Signal Transduction/drug effects
10.
Eur J Histochem ; 50(1): 9-13, 2006.
Article in English | MEDLINE | ID: mdl-16584979

ABSTRACT

The existence of intranuclear lipid-dependent signal transduction systems has been demonstrated by several independent groups. Remarkably, intranuclear lipid-dependent signal transduction pathways are regulated independently from their membrane/cytosolic counterparts. A sizable body of evidence suggests that nuclear lipid signaling controls critical biological functions such as cell proliferation, differentiation, and apoptosis. Diacylglycerol (DG) is a fundamental lipid second messenger which is produced in the nucleus. Since the levels of nuclear DG fluctuate during the cell cycle progression, it has been suggested that this lipid second messenger has important regulatory roles. Most likely, nuclear DG serves as a chemoattractant for some isoforms of protein kinase C that migrate to the nucleus in response to a variety of agonists. The nucleus also contains diacylglycerol kinases (DGKs), i.e. the enzymes that, by converting DG into phosphatidic acid (PA), terminate DG-dependent events. This review aims at highlighting the different isozymes of DGKs present within the nucleus as well as at discussing their potential functions with particular emphasis placed on DNA replication.


Subject(s)
Cell Nucleus/enzymology , DNA Replication , Diacylglycerol Kinase/biosynthesis , Animals , Cell Nucleus/genetics , Diacylglycerol Kinase/genetics , Gene Expression Regulation, Enzymologic , Humans , Isoenzymes/biosynthesis , Isoenzymes/genetics , Lipid Metabolism/genetics , Mice , Rats
11.
Histol Histopathol ; 20(4): 1251-60, 2005 10.
Article in English | MEDLINE | ID: mdl-16136505

ABSTRACT

Several studies have demonstrated the existence of an autonomous intranuclear phospho-inositide cycle that involves the activation of nuclear PI-PLC and the generation of diacylglycerol (DG) within the nucleus. Although several distinct isozymes of PI-PLC have been detected in the nucleus, the isoform that has been most consistently highlighted as being nuclear is PI-PLC-beta1. Nuclear PI-PLC-beta1 has been linked with either cell proliferation or differentiation. Remarkably, the activation mechanism of nuclear PI-PLC-beta1 has been shown to be different from its plasma membrane counterpart, being dependent on phosphorylation effected by p44/42 mitogen activated protein (MAP) kinase. In this review, we report the most up-dated findings about nuclear PI-PLC-beta1, such as the localization in nuclear speckles, the activity changes during the cell cycle phases, and the possible involvement in the progression of myelodisplastic syndrome to acute myeloid leukemia.


Subject(s)
Cell Nucleus/enzymology , Isoenzymes/physiology , Lipids/physiology , Signal Transduction/physiology , Type C Phospholipases/physiology , Amino Acid Sequence , Animals , Cell Cycle/physiology , Cell Nucleus/chemistry , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Molecular Sequence Data , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/physiology , Phospholipase C beta , Type C Phospholipases/chemistry , Type C Phospholipases/genetics
12.
Histol Histopathol ; 20(1): 239-52, 2005 01.
Article in English | MEDLINE | ID: mdl-15578442

ABSTRACT

A major factor undermining successful cancer treatment is the occurrence of resistance to conventional treatments such as chemotherapy and ionizing radiation. Evidence accumulated over the recent years has indicated the phosphoinositide 3-kinase/Akt signal transduction pathway as one of the major factors implicated in cancer resistance to conventional therapies. Indeed, the phosphoinositide 3-kinase/Akt axis regulates the expression and/or function of many anti-apoptotic proteins which strongly contributes to cancer cell survival. As a result, small molecules designed to specifically target key components of this signaling network are now being developed for clinical use as single therapeutic agents and/or in combination with other forms of therapy to overcome resistance. Initially, the phosphoinositide 3-kinase/Akt signal transduction pathway has been mainly investigated in solid tumors. Recently, however, this network has also been recognized as an important therapeutic target in human leukemias. Specific inhibition of this signalling pathway may be a valid approach to treat these diseases and increase the efficacy of standard types of therapy.


Subject(s)
Drug Resistance, Neoplasm/physiology , Leukemia/enzymology , Phosphatidylinositol 3-Kinases/physiology , Protein Serine-Threonine Kinases/physiology , Proto-Oncogene Proteins/physiology , Humans , Isoenzymes/physiology , Protein Kinases/physiology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-akt , Signal Transduction/physiology , TOR Serine-Threonine Kinases
13.
Leukemia ; 17(9): 1794-805, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12970779

ABSTRACT

It is now well established that the reduced capacity of tumor cells of undergoing cell death through apoptosis plays a key role both in the pathogenesis of cancer and in therapeutic treatment failure. Indeed, tumor cells frequently display multiple alterations in signal transduction pathways leading to either cell survival or apoptosis. In mammals, the pathway based on phosphoinositide 3-kinase (PI3K)/Akt conveys survival signals of extreme importance and its downregulation, by means of pharmacological inhibitors of PI3K, considerably lowers resistance to various types of therapy in solid tumors. We recently described an HL60 leukemia cell clone (HL60AR cells) with a constitutively active PI3K/Akt pathway. These cells were resistant to multiple chemotherapeutic drugs, all-trans-retinoic acid (ATRA), and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Treatment with two pharmacological inhibitors of PI3K, wortmannin and Ly294002, restored sensitivity of HL60AR cells to the aforementioned treatments. However, these inhibitors have some drawbacks that may severely limit or impede their clinical use. Here, we have tested whether or not a new selective Akt inhibitor, 1L-6-hydroxymethyl-chiro-inositol 2(R)-2-O-methyl-3-O-octadecylcarbonate (Akt inhibitor), was as effective as Ly294002 in lowering the sensitivity threshold of HL60 cells to chemotherapeutic drugs, TRAIL, ATRA, and ionizing radiation. Our findings demonstrate that, at a concentration which does not affect PI3K activity, the Akt inhibitor markedly reduced resistance of HL60AR cells to etoposide, cytarabine, TRAIL, ATRA, and ionizing radiation. This effect was likely achieved through downregulation of expression of antiapoptotic proteins such as c-IAP1, c-IAP2, cFLIP(L), and of Bad phosphorylation on Ser 136. The Akt inhibitor did not influence PTEN activity. At variance with Ly294002, the Akt inhibitor did not negatively affect phosphorylation of protein kinase C-zeta and it was less effective in downregulating p70S6 kinase (p70S6K) activity. The Akt inhibitor increased sensitivity to apoptotic inducers of K562 and U937, but not of MOLT-4, leukemia cells. Overall, our results indicate that selective Akt pharmacological inhibitors might be used in the future for enhancing the sensitivity of leukemia cells to therapeutic treatments that induce apoptosis or for overcoming resistance to these treatments.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Inositol/pharmacology , Intracellular Signaling Peptides and Proteins , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins/antagonists & inhibitors , Tretinoin/pharmacology , Blotting, Western , CASP8 and FADD-Like Apoptosis Regulating Protein , Carrier Proteins/metabolism , Caspases/metabolism , Chromones/pharmacology , Cytarabine/pharmacology , Cytochrome c Group/metabolism , Enzyme Inhibitors/pharmacology , Etoposide/pharmacology , HL-60 Cells/drug effects , HL-60 Cells/radiation effects , Humans , Inhibitor of Apoptosis Proteins , Inositol/analogs & derivatives , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Morpholines/pharmacology , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/metabolism , Protein Kinase C-theta , Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , Radiation, Ionizing , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Transfection , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases , bcl-Associated Death Protein
14.
Leukemia ; 17(11): 2157-67, 2003 Nov.
Article in English | MEDLINE | ID: mdl-12931221

ABSTRACT

The serine/threonine protein kinase Akt, a downstream effector of phosphoinositide 3-kinase (PI3K), plays a pivotal role in tumorigenesis because it affects the growth and survival of cancer cells. Several laboratories have demonstrated that Akt inhibits transcriptional activation of a number of related forkhead transcription factors now referred to as FoxO1, FoxO3, and FoxO4. Akt-regulated forkhead transcription factors are involved in the control of the expression of both the cyclin-dependent kinase (cdk) inhibitor p27(Kip1) and proapoptotic Bim protein. Very little information is available concerning the importance of the PI3K/Akt pathway in HL60 human leukemia cells. Here, we present our findings showing that the PI3K/Akt axis regulates cell cycle progression of HL60 cells through multiple mechanisms also involving the control of FoxO1 and FoxO3. To this end, we took advantage of a HL60 cell clone (HL60AR cells) with a constitutively activated PI3K/Akt axis. When compared with parental (PT) HL60 cells, HL60AR cells displayed higher levels of phosphorylated FoxO1 and FoxO3. In AR cells forkhead factors localized predominantly in the cytoplasm, whereas in PT cells they were mostly nuclear. AR cells proliferated faster than PT cells and showed a lower amount of the cdk inhibitor p27(Kip1), which was mainly found in the cytoplasm and was hyperphosphorylated on threonine residues. AR cells also displayed higher levels of cyclin D1 and phosphorylated p110 Retinoblastoma protein. The protein levels of cdk2, cdk4, and cdk6 were not altered in HL60AR cells, whereas the activities of both ckd2 and cdk6 were higher in AR than in PT cells. These results show that in HL60 cells the PI3K/Akt signaling pathway may be involved in the control of the cell cycle progression most likely through mechanisms involving the activation of forkhead transcription factors.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Cycle/physiology , Cyclin D1/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Androstadienes/pharmacology , Cell Cycle Proteins/genetics , Cell Nucleus/enzymology , Cyclin-Dependent Kinase Inhibitor p27 , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Fluorescent Antibody Technique , G1 Phase/physiology , Gene Expression Regulation, Neoplastic , HL-60 Cells , Humans , Proto-Oncogene Proteins c-akt , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Wortmannin
15.
Leukemia ; 17(2): 379-89, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12592338

ABSTRACT

TRAIL is a member of the tumor necrosis factor superfamily which induces apoptosis in cancer but not in normal cells. Akt1 promotes cell survival and blocks apoptosis. The scope of this paper was to investigate whether a HL60 human leukemia cell clone (named AR) with constitutively active Akt1 was resistant to TRAIL. We found that parental (PT) HL60 cells were very sensitive to a 6 h incubation in the presence of TRAIL and died by apoptosis. In contrast, AR cells were resistant to TRAIL concentrations as high as 2 microg/ml for 24 h. Two pharmacological inhibitors of PI3K, Ly294002 and wortmannin, restored TRAIL sensitivity of AR cells. AR cells stably overexpressing PTEN had lower Akt1 activity and were sensitive to TRAIL. Conversely, PT cells stably overexpressing a constitutive active form of Akt1 became TRAIL resistant. TRAIL activated caspase-8 but not caspase-9 or -10 in HL60 cells. We did not observe a protective effect of Bcl-X(L) or Bcl-2 against the cytotoxic activity of TRAIL, even though TRAIL induced cleavage of BID. There was a close correlation between TRAIL sensitivity and intranuclear presence of the p50 subunit of NF-kappaB. Higher levels of the FLICE inhibitory protein, cFLIP(L), were observed in TRAIL-resistant cells. Both the cell permeable NF-kappaB inhibitor SN50 and cycloheximide lowered cFLIP(L)expression and restored sentivity of AR cells to TRAIL. Our results suggest that Akt1 may be an important regulator of TRAIL sensitivity in HL60 cells through the activation of NF-kappaB and up-regulation of cFLIP(L) synthesis.


Subject(s)
Apoptosis/drug effects , Carrier Proteins/metabolism , Intracellular Signaling Peptides and Proteins , Membrane Glycoproteins/toxicity , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins , Tumor Necrosis Factor-alpha/toxicity , Apoptosis Regulatory Proteins , CASP8 and FADD-Like Apoptosis Regulating Protein , Chromones/pharmacology , Cytosol/drug effects , Cytosol/physiology , Drug Resistance, Neoplasm , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , HL-60 Cells , Humans , Membrane Glycoproteins/pharmacokinetics , Mitochondria/drug effects , Mitochondria/physiology , Morpholines/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt , TNF-Related Apoptosis-Inducing Ligand , Tumor Necrosis Factor-alpha/pharmacokinetics
16.
J Cell Biochem ; 88(3): 455-61, 2003 Feb 15.
Article in English | MEDLINE | ID: mdl-12532322

ABSTRACT

It is becoming increasingly evident that stimulation of nuclear lipid metabolism plays a central role in many signal transduction pathways that ultimately result in various cell responses including proliferation and differentiation. Nuclear lipid metabolism seems to be at least as complex as that existing at the plasma membrane. However, a distinctive feature of nuclear lipid biochemical pathways is their operational independence from their cell periphery counterparts. Although initially it was thought that nuclear lipids would serve as a source for second messengers, recent evidence points to the likelihood that lipids present in the nucleus also fulfil other roles. The aim of this review is to highlight the most intriguing advances made in the field over the last year, such as the production of new probes for the in situ mapping of nuclear phosphoinositides, the identification of two sources for nuclear diacylglycerol production, the emerging details about the peculiar regulation of nuclear phosphoinositide synthesizing enzymes, and the distinct possibility that nuclear lipids are involved in processes such as chromatin organization and pre-mRNA splicing.


Subject(s)
Cell Nucleus/chemistry , Cell Nucleus/metabolism , Lipid Metabolism , Diglycerides/metabolism , Humans , Molecular Probes/metabolism , Phosphatidylinositols/metabolism , Signal Transduction/physiology
17.
Histol Histopathol ; 17(4): 1193-205, 2002 10.
Article in English | MEDLINE | ID: mdl-12371147

ABSTRACT

The nuclear matrix is defined as the residual framework after the removal of the nuclear envelope, chromatin, and soluble components by sequential extractions. According to several investigators the nuclear matrix provides the structural basis for intranuclear order. However, the existence itself and the nature of this structure is still uncertain. Although the techniques used for the visualization of the nuclear matrix have improved over the years, it is still unclear to what extent the isolated nuclear matrix corresponds to an in vivo existing structure. Therefore, considerable skepticism continues to surround the nuclear matrix fraction as an accurate representation of the situation in living cells. Here, we summarize the experimental evidence in favor of, or against, the presence of a diffuse nucleoskeleton as a facilitating organizational nonchromatin structure of the nucleus.


Subject(s)
Cell Nucleus/physiology , Nuclear Matrix/physiology , Animals , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Humans , Nuclear Matrix/metabolism , Nuclear Matrix/ultrastructure , Nuclear Proteins/metabolism , Tissue Fixation
18.
Cell Mol Life Sci ; 59(7): 1129-37, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12222960

ABSTRACT

Several independent groups have shown that lipid-dependent signal transduction systems operate in the nucleus and that they are regulated independently from their membrane and cytosolic counterparts. A sizable body of evidence suggests that nuclear lipid signaling controls critical biological functions such as cell proliferation and differentiation. Diacylglycerol is a fundamental lipid second messenger which is produced in the nucleus. The levels of nuclear diacylglycerol fluctuate during the cell cycle progression, suggesting that such a molecule has important regulatory roles. Most likely, nuclear diacylglycerol serves as a chemoattractant for some isoforms of protein kinase C that migrate to the nucleus in response to a variety of agonists. The nucleus also contains diacylglycerol kinases, i.e. the enzymes that, by converting diacylglycerol into phosphatidic acid, terminate diacylglycerol-dependent events. A number of diacylglycerol kinases encoded by separate genes are present in the mammalian genome. This review aims at highlighting the different isotypes of diacylglycerol kinases identified at the nuclear level as well as at discussing their potential function and regulation.


Subject(s)
Cell Nucleus/enzymology , Diacylglycerol Kinase/physiology , Animals , Cell Nucleus/metabolism , Humans , Lipids/physiology , Mice , Models, Biological , Protein Isoforms/physiology , Rats , Signal Transduction
19.
J Cell Biochem ; 84(1): 56-67, 2001.
Article in English | MEDLINE | ID: mdl-11746516

ABSTRACT

Recent reports have highlighted that phosphoinositide-specific phospholipase Cbeta1 expression is linked to neuronal differentiation in different experimental models. We sought to determine whether or not this is also true for nerve growth factor (NGF)-induced neuronal differentiation of rat PC12 cells. However, we did not find differences in the expression of both the forms of phosphoinositide-specific phospholipase Cbeta1 (a and b) during sympathetic differentiation of these cells. Also, PC12 cell clones stably overexpressing phosphoinositide-specific phospholipase Cbeta1 were not more susceptible to the differentiating effect of NGF. Furthermore, since it is well established that phosphoinositide-specific phospholipase Cbeta1 affects cell proliferation, we investigated whether or not PC12 cell clones stably overexpressing phosphoinositide-specific phospholipase Cbeta1 showed differences in survival to serum deprivation and cell cycle, when compared to wild type cells. Nevertheless, we did not find any differences in these parameters between wild type cells and the overexpressing clones. Interestingly, in PC12 cells the overexpressed phosphoinositide-specific phospholipase Cbeta1 did not localize to the nucleus, but by immunofluorescence analysis, was detected in the cytoplasm. Therefore, our findings may represent another important clue to the fact that only when it is located within the nucleus phosphoinositide-specific phospholipase Cbeta1 is able to influence cell proliferation.


Subject(s)
Cell Differentiation/drug effects , Isoenzymes/metabolism , Nerve Growth Factor/pharmacology , PC12 Cells/drug effects , Phosphatidylinositols/metabolism , Type C Phospholipases/metabolism , Animals , Apoptosis/physiology , Cell Cycle/drug effects , Cell Cycle/physiology , Cell Differentiation/physiology , Cell Survival/drug effects , Cell Survival/physiology , Culture Media, Serum-Free/metabolism , Cytoplasm/metabolism , Hydrolysis , PC12 Cells/enzymology , PC12 Cells/pathology , Phospholipase C beta , Rats
20.
FEBS Lett ; 505(1): 1-6, 2001 Sep 07.
Article in English | MEDLINE | ID: mdl-11557031

ABSTRACT

Although inositol lipids constitute only a very minor proportion of total cellular lipids, they have received immense attention by scientists since it was discovered that they play key roles in a wide range of important cellular processes. In the late 1980s, it was suggested that these lipids are also present within the cell nucleus. Albeit the early reports about the intranuclear localization of phosphoinositides were met by skepticism and disbelief, compelling evidence has subsequently been accumulated convincingly showing that a phosphoinositide cycle is present at the nuclear level and may be activated in response to stimuli that do not activate the inositol lipid metabolism localized at the plasma membrane. Very recently, intriguing new data have highlighted that some of the mechanisms regulating nuclear inositol lipid metabolism differ in a substantial way from those operating at the cell periphery. Here, we provide an overview of recent findings regarding the regulation of both nuclear phosphatidylinositol 3-kinase and phosphoinositide-specific phospholipase C-beta1.


Subject(s)
Cell Nucleus/metabolism , Inositol/metabolism , Isoenzymes/metabolism , Lipid Metabolism , Phosphatidylinositol 3-Kinases/metabolism , Type C Phospholipases/metabolism , Animals , Humans , Phosphatidylinositols/metabolism , Phospholipase C beta , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...