Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Hum Genet ; 27(9): 1475-1480, 2019 09.
Article in English | MEDLINE | ID: mdl-31152157

ABSTRACT

We identified a 14q21.2 microdeletion in a 16-year-old boy with autism spectrum disorder (ASD), IQ in the lower part of normal range but high-functioning memory skills. The deletion affects a gene desert, and the non-deleted gene closest to the microdeletion boundaries is LRFN5, which encodes a protein involved in synaptic plasticity and implicated in neuro-psychiatric disorders. LRFN5 expression was significantly decreased in the proband's skin fibroblasts. The deleted region includes the pseudogene chr14.232.a, which is transcribed into a long non-coding RNA (lncLRFN5-10), whose levels were also significantly reduced in the proband's fibroblasts compared to controls. Transfection of the patient's fibroblasts with a plasmid expressing chr14.232.a significantly increased LRFN5 expression, while siRNA targeting chr14.232.a-derived lncLRFN5-10 reduced LRFN5 levels. In summary, we report on an individual with ASD carrying a microdeletion encompassing the pseudogene chr14.232.a encoding for lncLRFN5-10, which was found to affect the expression levels of the nearby, non-deleted LRFN5. This case illustrates the potential role of long non-coding RNAs in regulating expression of neighbouring genes with a functional role in ASD pathogenesis.


Subject(s)
Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Chromosome Deletion , Chromosomes, Human, Pair 14 , Gene Expression , Membrane Glycoproteins/genetics , Pseudogenes , Adolescent , Fibroblasts/metabolism , Genetic Predisposition to Disease , Humans , Magnetic Resonance Imaging , Male , Skin/cytology , Exome Sequencing
2.
Mol Genet Metab ; 124(4): 243-253, 2018 08.
Article in English | MEDLINE | ID: mdl-29801986

ABSTRACT

Carbamoyl phosphate synthetase 1 (CPS1) is a urea cycle enzyme that forms carbamoyl phosphate from bicarbonate, ammonia and ATP. Bi-allelic mutations of the CPS1 gene result in a urea cycle disorder presenting with hyperammonemia, often with reduced citrulline, and without orotic aciduria. CPS1 deficiency is particularly challenging to treat and lack of early recognition typically results in early neonatal death. Therapeutic interventions have limited efficacy and most patients develop long-term neurologic sequelae. Using transgenic techniques, we generated a conditional Cps1 knockout mouse. By loxP/Cre recombinase technology, deletion of the Cps1 locus was achieved in adult transgenic animals using a Cre recombinase-expressing adeno-associated viral vector. Within four weeks from vector injection, all animals developed hyperammonemia without orotic aciduria and died. Minimal CPS1 protein was detectable in livers. To investigate the efficacy of gene therapy for CPS deficiency following knock-down of hepatic endogenous CPS1 expression, we injected these mice with a helper-dependent adenoviral vector (HDAd) expressing the large murine CPS1 cDNA under control of the phosphoenolpyruvate carboxykinase promoter. Liver-directed HDAd-mediated gene therapy resulted in survival, normalization of plasma ammonia and glutamine, and 13% of normal Cps1 expression. A gender difference in survival suggests that female mice may require higher hepatic CPS1 expression. We conclude that this conditional murine model recapitulates the clinical and biochemical phenotype detected in human patients with CPS1 deficiency and will be useful to investigate ammonia-mediated neurotoxicity and for the development of cell- and gene-based therapeutic approaches.


Subject(s)
Carbamoyl-Phosphate Synthase (Ammonia)/genetics , Carbamoyl-Phosphate Synthase I Deficiency Disease/therapy , Genetic Therapy , Hyperammonemia/therapy , Ammonia/metabolism , Animals , Carbamoyl-Phosphate Synthase (Ammonia)/therapeutic use , Carbamoyl-Phosphate Synthase I Deficiency Disease/genetics , Carbamoyl-Phosphate Synthase I Deficiency Disease/metabolism , Carbamoyl-Phosphate Synthase I Deficiency Disease/pathology , Carbamyl Phosphate/metabolism , Female , Gene Expression Regulation, Enzymologic , Glutamine/metabolism , Humans , Hyperammonemia/genetics , Hyperammonemia/metabolism , Hyperammonemia/pathology , Liver/enzymology , Liver/pathology , Male , Mice , Mice, Knockout , Mutation , Orotate Phosphoribosyltransferase/deficiency , Orotate Phosphoribosyltransferase/genetics , Orotidine-5'-Phosphate Decarboxylase/deficiency , Orotidine-5'-Phosphate Decarboxylase/genetics , Purine-Pyrimidine Metabolism, Inborn Errors/genetics , Purine-Pyrimidine Metabolism, Inborn Errors/pathology
3.
Cell Rep ; 15(10): 2292-2300, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27239044

ABSTRACT

Primary hyperoxaluria type I (PH1) is an autosomal-recessive inborn error of liver metabolism caused by alanine:glyoxylate aminotransferase (AGT) deficiency. In silico modeling of liver metabolism in PH1 recapitulated accumulation of known biomarkers as well as alteration of histidine and histamine levels, which we confirmed in vitro, in vivo, and in PH1 patients. AGT-deficient mice showed decreased vascular permeability, a readout of in vivo histamine activity. Histamine reduction is most likely caused by increased catabolism of the histamine precursor histidine, triggered by rerouting of alanine flux from AGT to the glutamic-pyruvate transaminase (GPT, also known as the alanine-transaminase ALT). Alanine administration reduces histamine levels in wild-type mice, while overexpression of GPT in PH1 mice increases plasma histidine, normalizes histamine levels, restores vascular permeability, and decreases urinary oxalate levels. Our work demonstrates that genome-scale metabolic models are clinically relevant and can link genotype to phenotype in metabolic disorders.


Subject(s)
Computer Simulation , Histamine/metabolism , Histidine/metabolism , Homeostasis , Hyperoxaluria, Primary/enzymology , Hyperoxaluria, Primary/pathology , Liver/metabolism , Models, Biological , Transaminases/metabolism , Alanine/administration & dosage , Alanine Transaminase/metabolism , Animals , Cell Line , Gene Knockdown Techniques , Hepatocytes/enzymology , Hepatocytes/pathology , Humans , Hyperoxaluria, Primary/urine , Male , Metabolome , Mice , Oxalates/urine
SELECTION OF CITATIONS
SEARCH DETAIL