Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Allergy Clin Immunol ; 152(3): 689-699.e6, 2023 09.
Article in English | MEDLINE | ID: mdl-36858158

ABSTRACT

BACKGROUND: CD11c+Tbet+ B cells are enriched in autoimmunity and chronic infections and also expand on immune challenge in healthy individuals. CD11c+Tbet+ B cells remain an enigmatic B-cell population because of their intrinsic heterogeneity. OBJECTIVES: We investigated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen-specific development and differentiation properties of 3 separate CD11c+ B-cell subsets-age-associated B cells (ABCs), double-negative 2 (DN2) B cells, and activated naive B cells-and compared them to their canonical CD11c- counterparts. METHODS: Dynamics of the response of the 3 CD11c+ B-cell subsets were assessed at SARS-CoV-2 vaccination in healthy donors by spectral flow cytometry. Distinct CD11c+ B-cell subsets were functionally characterized by optimized in vitro cultures. RESULTS: In contrast to a durable expansion of antigen-specific CD11c- memory B cells over time, both ABCs and DN2 cells were strongly expanded shortly after second vaccination and subsequently contracted. Functional characterization of antibody-secreting cell differentiation dynamics revealed that CD11c+Tbet+ B cells were primed for antibody-secreting cell differentiation compared to relevant canonical CD11c- counterparts. CONCLUSION: Overall, CD11c+Tbet+ B cells encompass heterogeneous subpopulations, of which primarily ABCs as well as DN2 B cells respond early to immune challenge and display a pre-antibody-secreting cell phenotype.


Subject(s)
B-Lymphocyte Subsets , COVID-19 , Humans , COVID-19 Vaccines , SARS-CoV-2 , Cell Differentiation
2.
Int J Mol Sci ; 23(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36232432

ABSTRACT

Patients with inflammatory bowel disease (IBD) produce enhanced immunoglobulin A (IgA) against the microbiota compared to healthy individuals, which has been correlated with disease severity. Since IgA complexes can potently activate myeloid cells via the IgA receptor FcαRI (CD89), excessive IgA production may contribute to IBD pathology. However, the cellular mechanisms that contribute to dysregulated IgA production in IBD are poorly understood. Here, we demonstrate that intestinal FcαRI-expressing myeloid cells (i.e., monocytes and neutrophils) are in close contact with B lymphocytes in the lamina propria of IBD patients. Furthermore, stimulation of FcαRI-on monocytes triggered production of cytokines and chemokines that regulate B-cell differentiation and migration, including interleukin-6 (IL6), interleukin-10 (IL10), tumour necrosis factor-α (TNFα), a proliferation-inducing ligand (APRIL), and chemokine ligand-20 (CCL20). In vitro, these cytokines promoted IgA isotype switching in human B cells. Moreover, when naïve B lymphocytes were cultured in vitro in the presence of FcαRI-stimulated monocytes, enhanced IgA isotype switching was observed compared to B cells that were cultured with non-stimulated monocytes. Taken together, FcαRI-activated monocytes produced a cocktail of cytokines, as well as chemokines, that stimulated IgA switching in B cells, and close contact between B cells and myeloid cells was observed in the colons of IBD patients. As such, we hypothesize that, in IBD, IgA complexes activate myeloid cells, which in turn can result in excessive IgA production, likely contributing to disease pathology. Interrupting this loop may, therefore, represent a novel therapeutic strategy.


Subject(s)
Inflammatory Bowel Diseases , Interleukin-10 , B-Lymphocytes , Cytokines , Humans , Immunoglobulin A , Immunoglobulin Class Switching , Immunoglobulin Isotypes , Interleukin-6 , Ligands , Monocytes , Tumor Necrosis Factor-alpha
3.
Elife ; 112022 07 15.
Article in English | MEDLINE | ID: mdl-35838348

ABSTRACT

Background: Patients affected by different types of autoimmune diseases, including common conditions such as multiple sclerosis (MS) and rheumatoid arthritis (RA), are often treated with immunosuppressants to suppress disease activity. It is not fully understood how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific humoral and cellular immunity induced by infection and/or upon vaccination is affected by immunosuppressants. Methods: The dynamics of cellular immune reactivation upon vaccination of SARS-CoV-2 experienced MS patients treated with the humanized anti-CD20 monoclonal antibody ocrelizumab (OCR) and RA patients treated with methotrexate (MTX) monotherapy were analyzed at great depth via high-dimensional flow cytometry of whole blood samples upon vaccination with the SARS-CoV-2 mRNA-1273 (Moderna) vaccine. Longitudinal B and T cell immune responses were compared to SARS-CoV-2 experienced healthy controls (HCs) before and 7 days after the first and second vaccination. Results: OCR-treated MS patients exhibit a preserved recall response of CD8+ T central memory cells following first vaccination compared to HCs and a similar CD4+ circulating T follicular helper 1 and T helper 1 dynamics, whereas humoral and B cell responses were strongly impaired resulting in absence of SARS-CoV-2-specific humoral immunity. MTX treatment significantly delayed antibody levels and B reactivation following the first vaccination, including sustained inhibition of overall reactivation marker dynamics of the responding CD4+ and CD8+ T cells. Conclusions: Together, these findings indicate that SARS-CoV-2 experienced MS-OCR patients may still benefit from vaccination by inducing a broad CD8+ T cell response which has been associated with milder disease outcome. The delayed vaccine-induced IgG kinetics in RA-MTX patients indicate an increased risk after the first vaccination, which might require additional shielding or alternative strategies such as treatment interruptions in vulnerable patients. Funding: This research project was supported by ZonMw (The Netherlands Organization for Health Research and Development, #10430072010007), the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement (#792532 and #860003), the European Commission (SUPPORT-E, #101015756) and by PPOC (#20_21 L2506), the NHMRC Leadership Investigator Grant (#1173871).


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Multiple Sclerosis , Viral Vaccines , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , Arthritis, Rheumatoid/drug therapy , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , Humans , Immunosuppressive Agents/therapeutic use , Multiple Sclerosis/drug therapy , SARS-CoV-2 , Vaccination , Viral Vaccines/genetics
4.
Front Immunol ; 13: 732977, 2022.
Article in English | MEDLINE | ID: mdl-35371001

ABSTRACT

Immunoglobulin A (IgA) is generally considered as a non-inflammatory regulator of mucosal immunity, and its importance in diversifying the gut microbiota is increasingly appreciated. IgA autoantibodies have been found in several autoimmune or chronic inflammatory diseases, but their role in pathophysiology is ill-understood. IgA can interact with the Fc receptor FcαRI on immune cells. We now established a novel IgA autoimmune blistering model, which closely resembles the human disease linear IgA bullous disease (LABD) by using genetically modified mice that produce human IgA and express human FcαRI. Intravital microscopy demonstrated that presence of IgA anti-collagen XVII, - the auto-antigen in LABD-, resulted in neutrophil activation and extravasation from blood vessels into skin tissue. Continued exposure to anti-collagen XVII IgA led to massive neutrophil accumulation, severe tissue damage and blister formation. Importantly, treatment with anti-FcαRI monoclonal antibodies not only prevented disease, but was also able to resolve existing inflammation and tissue damage. Collectively, our data reveal a novel role of neutrophil FcαRI in IgA autoantibody-mediated disease and identify FcαRI as promising new therapeutic target to resolve chronic inflammation and tissue damage.


Subject(s)
Immunoglobulin A , Receptors, Fc , Animals , Antibodies, Monoclonal/therapeutic use , Autoantibodies , Inflammation/drug therapy , Mice
5.
Mucosal Immunol ; 15(4): 562-572, 2022 04.
Article in English | MEDLINE | ID: mdl-35418672

ABSTRACT

Vitamin A and its derivative retinoic acid (RA) play important roles in the regulation of mucosal immunity. The effect of vitamin A metabolism on T lymphocyte immunity has been well documented, but its role in mucosal B lymphocyte regulation is less well described. Intestinal immunoglobulin A (IgA) is key in orchestrating a balanced gut microbiota composition. Here, we describe the contribution of RA to IgA class switching in tissues including the lamina propria, mesenteric lymph nodes, Peyer's patches and isolated lymphoid follicles. RA can either indirectly skew T cells or directly affect B cell differentiation. IgA levels in healthy individuals are under the control of the metabolism of vitamin A, providing a steady supply of RA. However, IgA levels are altered in inflammatory bowel disease patients, making control of the metabolism of vitamin A a potential therapeutic target. Thus, dietary vitamin A is a key player in regulating IgA production within the intestine, acting via multiple immunological pathways.


Subject(s)
Immunoglobulin A , Peyer's Patches , Humans , Immunity, Mucosal , Immunoglobulin A/metabolism , Intestinal Mucosa , Tretinoin/metabolism , Vitamin A/metabolism
6.
Front Immunol ; 12: 671283, 2021.
Article in English | MEDLINE | ID: mdl-34305901

ABSTRACT

The vitamin A derivative, retinoid acid (RA) is key player in guiding adaptive mucosal immune responses. However, data on the uptake and metabolism of vitamin A within human immune cells has remained largely elusive because retinoids are small, lipophilic molecules which are difficult to detect. To overcome this problem and to be able to study the effect of vitamin A metabolism in human immune cell subsets, we have synthesized novel bio-orthogonal retinoid-based probes (clickable probes), which are structurally and functionally indistinguishable from vitamin A. The probes contain a functional group (an alkyne) to conjugate to a fluorogenic dye to monitor retinoid molecules in real-time in immune cells. We demonstrate, by using flow cytometry and microscopy, that multiple immune cells have the capacity to internalize retinoids to varying degrees, including human monocyte-derived dendritic cells (DCs) and naïve B lymphocytes. We observed that naïve B cells lack the enzymatic machinery to produce RA, but use exogenous retinoic acid to enhance CD38 expression. Furthermore, we showed that human DCs metabolize retinal into retinoic acid, which in co-culture with naïve B cells led to of the induction of CD38 expression. These data demonstrate that in humans, DCs can serve as an exogenous source of RA for naïve B cells. Taken together, through the use of clickable vitamins our data provide valuable insight in the mechanism of vitamin A metabolism and its importance for human adaptive immunity.


Subject(s)
B-Lymphocytes/immunology , Click Chemistry/methods , Dendritic Cells/immunology , Vitamin A/metabolism , ADP-ribosyl Cyclase 1/metabolism , Adaptive Immunity , Cells, Cultured , Coculture Techniques , Copper/metabolism , Flow Cytometry , Fluorescent Dyes , Humans , Tretinoin/chemistry , Tretinoin/metabolism , Up-Regulation , Vitamin A/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...