Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Front Immunol ; 15: 1396603, 2024.
Article in English | MEDLINE | ID: mdl-38846944

ABSTRACT

Background: The Coronaviridae family comprises seven viruses known to infect humans, classified into alphacoronaviruses (HCoV-229E and HCoV-NL63) and betacoronaviruses (HCoV-OC43 and HCoV-HKU1), which are considered endemic. Additionally, it includes SARS-CoV (severe acute respiratory syndrome), MERS-CoV (Middle East respiratory syndrome), and the novel coronavirus SARS-CoV-2, responsible for COVID-19. SARS-CoV-2 induces severe respiratory complications, particularly in the elderly, immunocompromised individuals and those with underlying diseases. An essential question since the onset of the COVID-19 pandemic has been to determine whether prior exposure to seasonal coronaviruses influences immunity or protection against SARS-CoV-2. Methods: In this study, we investigated a cohort of 47 couples (N=94), where one partner tested positive for SARS-CoV-2 infection via real-time PCR while the other remained negative. Plasma samples, collected at least 30 days post-PCR reaction, were assessed using indirect ELISA and competition assays to measure specific antibodies against the receptor-binding domain (RBD) portion of the Spike (S) protein from SARS-CoV-2, HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1. Results: IgG antibody levels against the four endemic coronavirus RBD proteins were similar between the PCR-positive and PCR-negative individuals, suggesting that IgG against endemic coronavirus RBD regions was not associated with protection from infection. Moreover, we found no significant IgG antibody cross-reactivity between endemic coronaviruses and SARS-CoV-2 RBDs. Conclusions: Taken together, results suggest that anti-RBD antibodies induced by a previous infection with endemic HCoVs do not protect against acquisition of COVID-19 among exposed uninfected individuals.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Male , Female , Antibodies, Viral/immunology , Antibodies, Viral/blood , Adult , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Coronavirus/immunology , Endemic Diseases , Cross Reactions/immunology
2.
Vaccines (Basel) ; 12(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38675739

ABSTRACT

The unprecedented global impact caused by SARS-CoV-2 imposed huge health and economic challenges, highlighting the urgent need for safe and effective vaccines. The receptor-binding domain (RBD) of SARS-CoV-2 is the major target for neutralizing antibodies and for vaccine formulations. Nonetheless, the low immunogenicity of the RBD requires the use of alternative strategies to enhance its immunological properties. Here, we evaluated the use of a subunit vaccine antigen generated after the genetic fusing of the RBD with a mouse IgG antibody. Subcutaneous administration of RBD-IgG led to the extended presence of the protein in the blood of immunized animals and enhanced RBD-specific IgG titers. Furthermore, RBD-IgG immunized mice elicited increased virus neutralizing antibody titers, measured both with pseudoviruses and with live original (Wuhan) SARS-CoV-2. Immunized K18-hACE2 mice were fully resistant to the lethal challenge of the Wuhan SARS-CoV-2, demonstrated by the control of body-weight loss and virus loads in their lungs and brains. Thus, we conclude that the genetic fusion of the RBD with an IgG molecule enhanced the immunogenicity of the antigen and the generation of virus-neutralizing antibodies, supporting the use of IgG chimeric antigens as an approach to improve the performance of SARS-CoV-2 subunit vaccines.

3.
Exp Biol Med (Maywood) ; 248(19): 1616-1623, 2023 10.
Article in English | MEDLINE | ID: mdl-37750021

ABSTRACT

Dendritic cells are central to the development of immunity, as they are specialized in initiating antigen-specific immune responses. In this review, we briefly present the existing knowledge on dendritic cell biology and how their division in different dendritic cell subsets may impact the development of immune responses. In addition, we explore the use of chimeric monoclonal antibodies that bind to dendritic cell surface receptors, with an emphasis on the C-type lectin family of endocytic receptors, to deliver antigens directly to these cells. Promising preclinical studies have shown that it is possible to modulate the development of immune responses to different pathogens when monoclonal antibodies fused to pathogen-derived antigens are used to deliver the antigen to different subsets of dendritic cells. This approach can be used to improve the efficacy of vaccines against different pathogens.


Subject(s)
Vaccines , Receptors, Cell Surface/metabolism , Lectins, C-Type/metabolism , Antibodies, Monoclonal , Dendritic Cells
4.
Int J Mol Sci ; 24(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37445695

ABSTRACT

Chikungunya virus (CHIKV) has become a significant public health concern due to the increasing number of outbreaks worldwide and the associated comorbidities. Despite substantial efforts, there is no specific treatment or licensed vaccine against CHIKV to date. The E2 glycoprotein of CHIKV is a promising vaccine candidate as it is a major target of neutralizing antibodies during infection. In this study, we evaluated the immunogenicity of two DNA vaccines (a non-targeted and a dendritic cell-targeted vaccine) encoding a consensus sequence of E2CHIKV and a recombinant protein (E2*CHIKV). Mice were immunized with different homologous and heterologous DNAprime-E2* protein boost strategies, and the specific humoral and cellular immune responses were accessed. We found that mice immunized with heterologous non-targeted DNA prime- E2*CHIKV protein boost developed high levels of neutralizing antibodies, as well as specific IFN-γ producing cells and polyfunctional CD4+ and CD8+ T cells. We also identified 14 potential epitopes along the E2CHIKV protein. Furthermore, immunization with recombinant E2*CHIKV combined with the adjuvant AS03 presented the highest humoral response with neutralizing capacity. Finally, we show that the heterologous prime-boost strategy with the non-targeted pVAX-E2 DNA vaccine as the prime followed by E2* protein + AS03 boost is a promising combination to elicit a broad humoral and cellular immune response. Together, our data highlights the importance of E2CHIKV for the development of a CHIKV vaccine.


Subject(s)
Chikungunya virus , Vaccines, DNA , Viral Vaccines , Animals , Mice , Chikungunya virus/genetics , Antibodies, Neutralizing , CD8-Positive T-Lymphocytes , Antibodies, Viral , Immunity, Cellular , DNA
5.
J Fungi (Basel) ; 9(5)2023 May 10.
Article in English | MEDLINE | ID: mdl-37233259

ABSTRACT

Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidioides brasiliensis, a thermally dimorphic fungus, which is the most frequent endemic systemic mycosis in many Latin American countries, where ~10 million people are believed to be infected. In Brazil, it is ranked as the tenth most common cause of death among chronic infectious diseases. Hence, vaccines are in development to combat this insidious pathogen. It is likely that effective vaccines will need to elicit strong T cell-mediated immune responses composed of IFNγ secreting CD4+ helper and CD8+ cytolytic T lymphocytes. To induce such responses, it would be valuable to harness the dendritic cell (DC) system of antigen-presenting cells. To assess the potential of targeting P10, which is a peptide derived from gp43 secreted by the fungus, directly to DCs, we cloned the P10 sequence in fusion with a monoclonal antibody to the DEC205 receptor, an endocytic receptor that is abundant on DCs in lymphoid tissues. We verified that a single injection of the αDEC/P10 antibody caused DCs to produce a large amount of IFNγ. Administration of the chimeric antibody to mice resulted in a significant increase in the levels of IFN-γ and IL-4 in lung tissue relative to control animals. In therapeutic assays, mice pretreated with αDEC/P10 had significantly lower fungal burdens compared to control infected mice, and the architecture of the pulmonary tissues of αDEC/P10 chimera-treated mice was largely normal. Altogether, the results obtained so far indicate that targeting P10 through a αDEC/P10 chimeric antibody in the presence of polyriboinosinic: polyribocytidylic acid is a promising strategy in vaccination and therapeutic protocols to combat PCM.

6.
Eur J Immunol ; 53(8): e2350372, 2023 08.
Article in English | MEDLINE | ID: mdl-37160134

ABSTRACT

Regulatory and effector cell responses to Plasmodium vivax, the most common human malaria parasite outside Africa, remain understudied in naturally infected populations. Here, we describe peripheral CD4+ T- and B-cell populations during and shortly after an uncomplicated P. vivax infection in 38 continuously exposed adult Amazonians. Consistent with previous observations, we found an increased frequency in CD4+ CD45RA- CD25+ FoxP3+ T regulatory cells that express the inhibitory molecule CTLA-4 during the acute infection, with a sustained expansion of CD21- CD27- atypical memory cells within the CD19+ B-cell compartment. Both Th1- and Th2-type subsets of CXCR5+ ICOShi PD-1+ circulating T follicular helper (cTfh) cells, which are thought to contribute to antibody production, were induced during P. vivax infection, with a positive correlation between overall cTfh cell frequency and IgG antibody titers to the P. vivax blood-stage antigen MSP119 . We identified significant changes in cell populations that had not been described in human malaria, such as an increased frequency of CTLA-4+ T follicular regulatory cells that antagonize Tfh cells, and a decreased frequency of circulating CD24hi CD27+ B regulatory cells in response to acute infection. In conclusion, we disclose a complex immunoregulatory network that is critical to understand how naturally acquired immunity develops in P. vivax malaria.


Subject(s)
Malaria, Vivax , Plasmodium vivax , Adult , Humans , Plasmodium vivax/physiology , CTLA-4 Antigen , T-Lymphocytes, Helper-Inducer , CD4-Positive T-Lymphocytes
7.
Front Immunol ; 14: 1071041, 2023.
Article in English | MEDLINE | ID: mdl-37006270

ABSTRACT

Introduction: In the present study we evaluated the features of different recombinant forms of Zika virus (ZIKV) proteins produced in either bacterial (Eschericha coli) or insect cells (Drosophila melanogaster). The ZIKV-envelope glycoprotein (EZIKV) is responsible for virus entry into host cells, is the main target of neutralizing antibodies and has been used as a target antigen either for serological tests or for the development of subunit vaccines. The EZIKV is composed of three structural and functional domains (EDI, EDII, and EDIII), which share extensive sequence conservation with the corresponding counterparts expressed by other flaviviruses, particularly the different dengue virus (DENV) subtypes. Methods: In this study, we carried out a systematic comparison of the antigenicity and immunogenicity of recombinant EZIKV, EDI/IIZIKV and EDIIIZIKV produced in E. coli BL21 and Drosophila S2 cells. For the antigenicity analysis we collected 88 serum samples from ZIKV-infected participants and 57 serum samples from DENV-infected. For immunogenicity, C57BL/6 mice were immunized with two doses of EZIKV, EDI/IIZIKV and EDIIIZIKV produced in E. coli BL21 and Drosophila S2 cells to evaluate humoral and cellular immune response. In addition, AG129 mice were immunized with EZIKV and then challenge with ZIKV. Results: Testing of samples collected from ZIKV-infected and DENV-infected participants demonstrated that the EZIKV and EDIIIZIKV produced in BL21 cells presented better sensitivity and specificity compared to proteins produced in S2 cells. In vivo analyses were carried out with C57BL/6 mice and the results indicated that, despite similar immunogenicity, antigens produced in S2 cells, particularly EZIKV and EDIIIZIKV, induced higher ZIKV-neutralizing antibody levels in vaccinated mice. In addition, immunization with EZIKV expressed in S2 cells delayed the onset of symptoms and increased survival rates in immunocompromised mice. All recombinant antigens, either produced in bacteria or insect cells, induced antigen-specific CD4+ and CD8+ T cell responses. Conclusion: In conclusion, the present study highlights the differences in antigenicity and immunogenicity of recombinant ZIKV antigens produced in two heterologous protein expression systems.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Mice , Zika Virus/genetics , Viral Envelope Proteins/chemistry , Antibodies, Viral , Drosophila melanogaster , Escherichia coli/genetics , Mice, Inbred C57BL , Vaccines, Subunit
8.
Biosensors (Basel) ; 13(3)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36979583

ABSTRACT

The evaluation of serological responses to COVID-19 is crucial for population-level surveillance, developing new vaccines, and evaluating the efficacy of different immunization programs. Research and development of point-of-care test technologies remain essential to improving immunity assessment, especially for SARS-CoV-2 variants that partially evade vaccine-induced immune responses. In this work, an impedimetric biosensor based on the immobilization of the recombinant trimeric wild-type spike protein (S protein) on zinc oxide nanorods (ZnONRs) was employed for serological evaluation. We successfully assessed its applicability using serum samples from spike-based COVID-19 vaccines: ChAdOx1-S (Oxford-AstraZeneca) and BNT162b2 (Pfizer-BioNTech). Overall, the ZnONRs/ spike-modified electrode displayed accurate results for both vaccines, showing excellent potential as a tool for assessing and monitoring seroprevalence in the population. A refined outcome of this technology was achieved when the ZnO immunosensor was functionalized with the S protein from the P.1 linage (Gamma variant). Serological responses against samples from vaccinated individuals were acquired with excellent performance. Following studies based on traditional serological tests, the ZnONRs/spike immunosensor data reveal that ChAdOx1-S vaccinated individuals present significantly less antibody-mediated immunity against the Gamma variant than the BNT162b2 vaccine, highlighting the great potential of this point-of-care technology for evaluating vaccine-induced humoral immunity against different SARS-CoV-2 strains.


Subject(s)
COVID-19 , Vaccines , Zinc Oxide , Humans , BNT162 Vaccine , SARS-CoV-2 , COVID-19 Vaccines , Seroepidemiologic Studies , COVID-19/diagnosis , Antibodies , Antibodies, Viral
9.
Int J Infect Dis ; 129: 142-151, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36736575

ABSTRACT

OBJECTIVES: Several Flaviviruses can co-circulate. Pre-existing immunity to one virus can modulate the response to a heterologous virus; however, the serological cross-reaction between these emerging viruses in dengue virus (DENV)-endemic regions are poorly understood. METHODS: A cross-sectional study was performed among the residents of Manaus city in the state of Amazonas, Brazil. The serological response was assessed by hemagglutination inhibition assay (HIA), enzyme-linked immunosorbent assay, and neutralization assay. RESULTS: A total of 74.52% of the participants were immunoglobulin G-positive (310/416), as estimated by lateral flow tests. Overall, 93.7% of the participants were seropositive (419/447) for at least one DENV serotype, and the DENV seropositivity ranged between 84.8% and 91.0%, as determined by HIA. About 93% had antiyellow fever virus 17D-reactive antibodies, whereas 80.5% reacted to wild-type yellow fever virus. Zika virus (ZIKV) had the lowest seropositivity percentage (52.6%) compared with other Flaviviruses. Individuals who were DENV-positive with high antibody titers by HIA or envelope protein domain III enzyme-linked immunosorbent assay reacted strongly with ZIKV, whereas individuals with low anti-DENV antibody titers reacted poorly toward ZIKV. Live virus neutralization assay with ZIKV confirmed that dengue serogroup and ZIKV-spondweni serogroup are far apart; hence, individuals who are DENV-positive do not cross-neutralize ZIKV efficiently. CONCLUSION: Taken together, we observed a high prevalence of DENV in the Manaus-Amazon region and a varying degree of cross-reactivity against emerging and endemic Flaviviruses. Epidemiological and exposure conditions in Manaus make its population susceptible to emerging and endemic arboviruses.


Subject(s)
Dengue Virus , Dengue , Flavivirus , Zika Virus Infection , Zika Virus , Humans , Zika Virus Infection/epidemiology , Brazil/epidemiology , Dengue/epidemiology , Cross-Sectional Studies , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Cross Reactions
10.
Viruses ; 15(2)2023 01 19.
Article in English | MEDLINE | ID: mdl-36851505

ABSTRACT

BACKGROUND: In 2019, the world witnessed the onset of an unprecedented pandemic. By February 2022, the infection by SARS-CoV-2 has already been responsible for the death of more than 5 million people worldwide. Recently, we and other groups discovered that SARS-CoV-2 infection induces ER stress and activation of the unfolded protein response (UPR) pathway. Degradation of misfolded/unfolded proteins is an essential element of proteostasis and occurs mainly in lysosomes or proteasomes. The N-terminal arginylation of proteins is characterized as an inducer of ubiquitination and proteasomal degradation by the N-degron pathway. RESULTS: The role of protein arginylation during SARS-CoV-2 infection was elucidated. Protein arginylation was studied in Vero CCL-81, macrophage-like THP1, and Calu-3 cells infected at different times. A reanalysis of in vivo and in vitro public omics data combined with immunoblotting was performed to measure levels of arginyl-tRNA-protein transferase (ATE1) and its substrates. Dysregulation of the N-degron pathway was specifically identified during coronavirus infections compared to other respiratory viruses. We demonstrated that during SARS-CoV-2 infection, there is an increase in ATE1 expression in Calu-3 and Vero CCL-81 cells. On the other hand, infected macrophages showed no enzyme regulation. ATE1 and protein arginylation was variant-dependent, as shown using P1 and P2 viral variants and HEK 293T cells transfection with the spike protein and receptor-binding domains (RBD). In addition, we report that ATE1 inhibitors, tannic acid and merbromine (MER) reduce viral load. This finding was confirmed in ATE1-silenced cells. CONCLUSIONS: We demonstrate that ATE1 is increased during SARS-CoV-2 infection and its inhibition has potential therapeutic value.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Proteolysis , Proteasome Endopeptidase Complex , HEK293 Cells
11.
Immunol Res ; 71(1): 39-50, 2023 02.
Article in English | MEDLINE | ID: mdl-36192522

ABSTRACT

Dengue is a mosquito-borne disease endemic in many tropical and subtropical countries. It is caused by the dengue virus (DENV) that can be classified into 4 different serotypes (DENV-1-4). Early diagnosis and management can reduce morbidity and mortality rates of severe forms of the disease, as well as decrease the risk of larger outbreaks. Hiperendemicity in some regions of the world and the possibility that some people develop a more severe form of disease after a secondary infection caused by antibody-dependent enhancement justify the need to understand more thoroughly the antibody response induced against the virus. Here, we successfully produced a recombinant DENV-2 envelope (E) protein and its domains (EDI/II and EDIII) in two distinct expression systems: the Drosophila S2 insect cell system and the BL21 (DE3) pLySs bacterial system. We then evaluated the reactivity of sera from patients previously infected with DENV to each recombinant protein and to each domain separately. Our results show that the E protein produced in Drosophila S2 cells is recognized more frequently than the protein produced in bacteria. However, the recognition of E protein produced in bacteria correlates better with the DENV-2 sera neutralization capacity. The results described here emphasize the differences observed when antigens produced in bacteria or eukaryotic cells are used and may be useful to gain more insight into the humoral immune responses induced by dengue infection.


Subject(s)
Dengue Virus , Dengue , Animals , Dengue Virus/metabolism , Antibodies, Viral , Eukaryotic Cells/metabolism , Epitopes , Viral Envelope Proteins , Recombinant Proteins , Dengue/diagnosis , Bacteria , Antibodies, Neutralizing
12.
Front Trop Dis, v. 5, 1369608, abr. 2024
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5387

ABSTRACT

Introduction: Zika virus (ZIKV) infection has been associated to Guillain-Barré syndrome in adults and congenital malformations during pregnancy, leading to the manifestation of congenital Zika syndrome (CZS). The ZIKV envelope protein (EZIKV), prominently displayed on the virus surface, is a primary target for the humoral immune response. However, limited information exists regarding its capacity to induce cellular immunity, particularly in pregnant women with a history of ZIKV infection. The EZIKV protein comprises three domains: the central domain (EDI), a dimerization domain (EDII), and a domain responsible for binding to the cell surface receptor (EDIII). To examine the regions of EZIKV targeted by cellular immunity, we examined cellular immune responses in a cohort of mothers infected with ZIKV, whose infants exhibited microcephaly. Methods: To assess the ZIKV-specific response, we used inactivated virus and different recombinant viral envelope proteins (EZIKV, EDI/IIZIKV and EDIIIZIKV). All women in the study contracted the infection during pregnancy, with 72% experiencing symptoms such as fever, rash, joint pain, and retro-orbital pain. Peripheral blood mononuclear cells (PMBC) were collected post- ZIKV diagnosis confirmation, with a median time of 18 months (IQR 13.5-19) after parturition. Using the ELISpot assay, we quantified specific interferon-gamma (IFNγ) producing cells by stimulating PBMC with either inactivated ZIKV particles or equimolar amounts of recombinant EZIKV, EDI/IIZIKV and EDIIIZIKV. Results and discussion: Our findings demonstrate the induction of IFN-γ producing cells in PBMC from ZIKV-convalescent mothers, whose infants manifested microcephaly, upon stimulation with both inactivated ZIKV particles and recombinant proteins. The identification of immunodominant regions within ZIKV can contribute for the development of targeted treatments and vaccine candidates tailored for pregnant women.

14.
Front Immunol ; 13: 1006996, 2022.
Article in English | MEDLINE | ID: mdl-36330518

ABSTRACT

Conventional dendritic cells (cDC) are a group of antigen-presenting cells specialized in priming T cell responses. In mice, splenic cDC are divided into conventional type 1 DC (cDC1) and conventional type 2 (cDC2). cDC1 are specialized to prime the Th1 CD4+ T cell response, while cDC2 are mainly associated with the induction of follicular helper T cell responses to support germinal center formation. However, the mechanisms that control the functions of cDC1 and cDC2 are not fully understood, especially the signaling pathways that can modulate their ability to promote different CD4+ T cell responses. Here, we targeted a model antigen for cDC1 and cDC2, through DEC205 and DCIR2 receptors, respectively, to study the role of the STAT3 signaling pathway in the ability of these cells to prime CD4+ T cells. Our results show that, in the absence of the STAT3 signaling pathway, antigen targeting to cDC2 induced similar frequencies of Tfh cells between STAT3-deficient mice compared to fully competent mice. On the other hand, Th1 and Th1-like Tfh cell responses were significantly reduced in STAT3-deficient mice after antigen targeting to cDC1 via the DEC205 receptor. In summary, our results indicate that STAT3 signaling does not control the ability of cDC2 to promote Tfh cell responses after antigen targeting via the DCIR2 receptor, but modulates the function of cDC1 to promote Th1 and Th1-like Tfh T cell responses after antigen targeting via the DEC205 receptor.


Subject(s)
Dendritic Cells , Signal Transduction , Mice , Animals , Spleen , Immunity
15.
Immun Ageing ; 19(1): 57, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36384671

ABSTRACT

BACKGROUND: Although older adults are at a high risk of severe or critical Covid-19, there are many cases of unvaccinated centenarians who had a silent infection or recovered from mild or moderate Covid-19. We studied three Brazilian supercentenarians, older than 110 years, who survived Covid-19 in 2020 before being vaccinated. RESULTS: Despite their advanced age, humoral immune response analysis showed that these individuals displayed robust levels of IgG and neutralizing antibodies (NAbs) against SARS-CoV-2. Enrichment of plasma proteins and metabolites related to innate immune response and host defense was also observed. None presented autoantibodies (auto-Abs) to type I interferon (IFN). Furthermore, these supercentenarians do not carry rare variants in genes underlying the known inborn errors of immunity, including particular inborn errors of type I IFN. CONCLUSION: These observations suggest that their Covid-19 resilience might be a combination of their genetic background and their innate and adaptive immunity.

16.
J Allergy Clin Immunol Glob ; 1(3): 112-121, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36203479

ABSTRACT

Background: Adaptive immunity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is decisive for disease control. Delayed activation of T cells is associated with a worse outcome in coronavirus disease 2019 (COVID-19). Although convalescent individuals exhibit solid T-cell immunity, to date, long-term immunity to SARS-CoV-2 is still under investigation. Objectives: We aimed to characterize the specific T-cell response on the basis of the in vitro recall of IFN-γ-producing cells to in silico-predicted peptides in samples from SARS-CoV-2 convalescent individuals. Methods: The sequence of the SARS-CoV-2 genome was screened, leading to the identification of specific and promiscuous peptides predicted to be recognized by CD4+ and CD8+ T cells. Next, we performed an in vitro recall of specific T cells from PBMC samples from the participants. The results were analyzed according to clinical features of the cohort and HLA diversity. Results: Our results indicated heterogeneous T-cell responsiveness among the participants. Compared with patients who exhibited mild symptoms, hospitalized patients had a significantly higher magnitude of response. In addition, male and older patients showed a lower number of IFN-γ-producing cells. Analysis of samples collected after 180 days revealed a reduction in the number of specific circulating IFN-γ-producing T cells, suggesting decreased immunity against viral peptides. Conclusion: Our data are evidence that in silico-predicted peptides are highly recognized by T cells from convalescent individuals, suggesting a possible application for vaccine design. However, the number of specific T cells decreases 180 days after infection, which might be associated with reduced protection against reinfection over time.

18.
Sci Rep ; 12(1): 15733, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36131132

ABSTRACT

Recent outbreaks of Zika virus (ZIKV) infection have highlighted the need for a better understanding of ZIKV-specific immune responses. The ZIKV envelope glycoprotein (EZIKV) is the most abundant protein on the virus surface and it is the main target of the protective immune response. EZIKV protein contains the central domain (EDI), a dimerization domain containing the fusion peptide (EDII), and a domain that binds to the cell surface receptor (EDIII). In this study, we performed a systematic comparison of the specific immune response induced by different EZIKV recombinant proteins (EZIKV, EDI/IIZIKV or EDIIIZIKV) in two mice strains. Immunization induced high titers of E-specific antibodies which recognized ZIKV-infected cells and neutralized the virus. Furthermore, immunization with EZIKV, EDI/IIZIKV and EDIIIZIKV proteins induced specific IFNγ-producing cells and polyfunctional CD4+ and CD8+ T cells. Finally, we identified 4 peptides present in the envelope protein (E1-20, E51-70, E351-370 and E361-380), capable of inducing a cellular immune response to the H-2Kd and H-2Kb haplotypes. In summary, our work provides a detailed assessment of the immune responses induced after immunization with different regions of the ZIKV envelope protein.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Antibodies, Neutralizing , Antibodies, Viral , CD8-Positive T-Lymphocytes/metabolism , Immunity, Cellular , Immunity, Humoral , Mice , Recombinant Proteins , Viral Envelope Proteins
19.
Nanomedicine ; 45: 102595, 2022 09.
Article in English | MEDLINE | ID: mdl-36031045

ABSTRACT

The development of safe and effective vaccine formulations against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a hallmark in the history of vaccines. Here we report a COVID-19 subunit vaccine based on a SARS-CoV-2 Spike protein receptor binding domain (RBD) incorporated into nano-multilamellar vesicles (NMV) associated with monophosphoryl lipid A (MPLA). The results based on immunization of C57BL/6 mice demonstrated that recombinant antigen incorporation into NMVs improved antibody and T-cell responses without inducing toxic effects under both in vitro and in vivo conditions. Administration of RBD-NMV-MPLA formulations modulated antigen avidity and IgG subclass responses, whereas MPLA incorporation improved the activation of CD4+/CD8+ T-cell responses. In addition, immunization with the complete vaccine formulation reduced the number of doses required to achieve enhanced serum virus-neutralizing antibody titers. Overall, this study highlights NMV/MPLA technology, displaying the performance improvement of subunit vaccines against SARS-CoV-2, as well as other infectious diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity , Immunoglobulin G , Lipids , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Spike Glycoprotein, Coronavirus , Vaccines, Subunit
20.
Front Immunol ; 13: 868305, 2022.
Article in English | MEDLINE | ID: mdl-35669785

ABSTRACT

Malaria is a major public health concern, as a highly effective human vaccine remains elusive. The efficacy of a subunit vaccine targeting the most abundant protein of the sporozoite surface, the circumsporozoite protein (CSP) has been hindered by difficulties in generating an effective humoral response in both quantity and quality. Using the rodent Plasmodium yoelii model we report here that immunization with CSP adjuvanted with 5'ppp-dsRNA, a RIG-I agonist, confers early and long-lasting sterile protection in mice against stringent sporozoite and mosquito bite challenges. The immunization induced high levels of antibodies, which were functional in targeting and killing the sporozoites and were sustained over time through the accumulation of long-lived plasma cells in the bone marrow. Moreover, 5'ppp-dsRNA-adjuvanted immunization with the CSP of P. falciparum was also significantly protective against challenges using a transgenic PfCSP-expressing P. yoelii parasite. Conversely, using the TLR3 agonist poly(A:U) as adjuvant resulted in a formulation that despite inducing high antibody levels was unable to generate equally functional antibodies and was, consequently, less protective. In conclusion, we demonstrate that using 5'ppp-dsRNA as an adjuvant to vaccines targeting CSP induces effective anti-Plasmodium humoral immunity.


Subject(s)
Malaria Vaccines , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Protozoan , Immunization , Mice , Plasmodium falciparum , Protozoan Proteins , Sporozoites
SELECTION OF CITATIONS
SEARCH DETAIL
...