Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Front Mol Biosci ; 11: 1389548, 2024.
Article in English | MEDLINE | ID: mdl-38784667

ABSTRACT

The global impact of zoonotic viral outbreaks underscores the pressing need for innovative antiviral strategies, particularly against respiratory zoonotic RNA viruses. These viruses possess a high potential to trigger future epidemics and pandemics due to their high mutation rate, broad host range and efficient spread through airborne transmission. Recent pandemics caused by coronaviruses and influenza A viruses underscore the importance of developing targeted antiviral strategies. Single-domain antibodies (sdAbs), originating from camelids, also known as nanobodies or VHHs (Variable Heavy domain of Heavy chain antibodies), have emerged as promising tools to combat current and impending zoonotic viral threats. Their unique structure, coupled with attributes like robustness, compact size, and cost-effectiveness, positions them as strong alternatives to traditional monoclonal antibodies. This review describes the pivotal role of sdAbs in combating respiratory zoonotic viruses, with a primary focus on enhancing sdAb antiviral potency through optimization techniques and diverse administration strategies. We discuss both the promises and challenges within this dynamically growing field.

2.
J Virol ; 98(4): e0013924, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38501663

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine enteric coronavirus, and the broad interspecies infection of SADS-CoV poses a potential threat to human health. This study provides experimental evidence to dissect the roles of distinct domains within the SADS-CoV spike S1 subunit in cellular entry. Specifically, we expressed the S1 and its subdomains, S1A and S1B. Cell binding and invasion inhibition assays revealed a preference for the S1B subdomain in binding to the receptors on the cell surface, and this unknown receptor is not utilized by the porcine epidemic diarrhea virus. Nanoparticle display demonstrated hemagglutination of erythrocytes from pigs, humans, and mice, linking the S1A subdomain to the binding of sialic acid (Sia) involved in virus attachment. We successfully rescued GFP-labeled SADS-CoV (rSADS-GFP) from a recombinant cDNA clone to track viral infection. Antisera raised against S1, S1A, or S1B contained highly potent neutralizing antibodies, with anti-S1B showing better efficiency in neutralizing rSADS-GFP infection compared to anti-S1A. Furthermore, depletion of heparan sulfate (HS) by heparinase treatment or pre-incubation of rSADS-GFP with HS or constituent monosaccharides could inhibit SADS-CoV entry. Finally, we demonstrated that active furin cleavage of S glycoprotein and the presence of type II transmembrane serine protease (TMPRSS2) are essential for SADS-CoV infection. These combined observations suggest that the wide cell tropism of SADS-CoV may be related to the distribution of Sia or HS on the cell surface, whereas the S1B contains the main protein receptor binding site. Specific host proteases also play important roles in facilitating SADS-CoV entry.IMPORTANCESwine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel pathogen infecting piglet, and its unique genetic evolution characteristics and broad species tropism suggest the potential for cross-species transmission. The virus enters cells through its spike (S) glycoprotein. In this study, we identify the receptor binding domain on the C-terminal part of the S1 subunit (S1B) of SADS-CoV, whereas the sugar-binding domain located at the S1 N-terminal part of S1 (S1A). Sialic acid, heparan sulfate, and specific host proteases play essential roles in viral attachment and entry. The dissection of SADS-CoV S1 subunit's functional domains and identification of cellular entry cofactors will help to explore the receptors used by SADS-CoV, which may contribute to exploring the mechanisms behind cross-species transmission and host tropism.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Spike Glycoprotein, Coronavirus , Animals , Humans , Mice , Alphacoronavirus/chemistry , Alphacoronavirus/physiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Heparitin Sulfate , N-Acetylneuraminic Acid/metabolism , Peptide Hydrolases , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Swine
3.
Nat Commun ; 15(1): 2319, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485931

ABSTRACT

Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron. Both the mammalian cell and C1 produced HuMab 87G7 broadly neutralise SARS-CoV-2 VOCs in vitro and also provide protection against VOC Omicron in hamsters. The C1 produced HuMab 87G7 is also able to protect against the Delta VOC in non-human primates. In summary, these findings show that the C1 expression system is a promising technology platform for the development of HuMabs in preventive and therapeutic medicine.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Primates , Immunoglobulin G , Antibodies, Monoclonal , Fungi , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Mammals
4.
Front Vet Sci ; 10: 1279162, 2023.
Article in English | MEDLINE | ID: mdl-38046573

ABSTRACT

Introduction: Porcine epidemic diarrhea virus (PEDV) causes enteric disease in pigs of all ages. PEDV can be grouped into G1 (classical strains) and G2 (variant strains) based on sequence differences in the spike gene. Although several pathogenesis studies using contemporary strains of PEDV have been conducted to date, there is limited information on the pathogenesis of historical PEDV strains in contemporary pigs. This study aimed to investigate the clinical disease course of 10 days-old pigs infected with a classical European G1a PEDV strain from the 1980s which was last passaged in pigs in 1994. Methods: Sequencing results confirmed that the virus inoculum was a PEDV strain closely related to the prototype CV777 strain. The PEDV stock was serially passaged three times in Vero cells, and the P3 infectious virus stock was used to inoculate the pigs. A total of 40 pigs were inoculated using the oral route. Results: Pigs showed no enteric disease signs, and PEDV shedding was not detected for 44 days post-inoculation (dpi). At necropsy at 3 (5 pigs) or 7 dpi (5 pigs), no lesions were observed in intestinal sections, which were negative for PEDV antigen by immunohistochemistry. In addition, no IgG or IgA PEDV-specific antibodies in serum or fecal samples for 35 dpi further indicates a lack of infection. Titration of the leftover thawed and refrozen PEDV virus stock inoculum showed that the virus stock retained its infectivity in Vero cell culture and the porcine small intestine enterocytes cell line IPEC-J2. Discussion: The reasons for the loss of infectivity in pigs are unknown. In conclusion, we showed that a classical G1a PEDV strain successfully propagated in cell cultures could not orally infect 40 piglets.

5.
Nature ; 624(7990): 201-206, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37794193

ABSTRACT

Coronavirus spike proteins mediate receptor binding and membrane fusion, making them prime targets for neutralizing antibodies. In the cases of severe acute respiratory syndrome coronavirus, severe acute respiratory syndrome coronavirus 2 and Middle East respiratory syndrome coronavirus, spike proteins transition freely between open and closed conformations to balance host cell attachment and immune evasion1-5. Spike opening exposes domain S1B, allowing it to bind to proteinaceous receptors6,7, and is also thought to enable protein refolding during membrane fusion4,5. However, with a single exception, the pre-fusion spike proteins of all other coronaviruses studied so far have been observed exclusively in the closed state. This raises the possibility of regulation, with spike proteins more commonly transitioning to open states in response to specific cues, rather than spontaneously. Here, using cryogenic electron microscopy and molecular dynamics simulations, we show that the spike protein of the common cold human coronavirus HKU1 undergoes local and long-range conformational changes after binding a sialoglycan-based primary receptor to domain S1A. This binding triggers the transition of S1B domains to the open state through allosteric interdomain crosstalk. Our findings provide detailed insight into coronavirus attachment, with possibilities of dual receptor usage and priming of entry as a means of immune escape.


Subject(s)
Betacoronavirus , Polysaccharides , Sialic Acids , Spike Glycoprotein, Coronavirus , Humans , Allosteric Regulation , Betacoronavirus/chemistry , Betacoronavirus/ultrastructure , Common Cold/virology , Cryoelectron Microscopy , Molecular Dynamics Simulation , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Binding , Protein Conformation , Sialic Acids/chemistry , Sialic Acids/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/ultrastructure , Immune Evasion
6.
PLoS Pathog ; 19(8): e1011571, 2023 08.
Article in English | MEDLINE | ID: mdl-37561789

ABSTRACT

Mucins play an essential role in protecting the respiratory tract against microbial infections while also acting as binding sites for bacterial and viral adhesins. The heavily O-glycosylated gel-forming mucins MUC5AC and MUC5B eliminate pathogens by mucociliary clearance. Transmembrane mucins MUC1, MUC4, and MUC16 can restrict microbial invasion at the apical surface of the epithelium. In this study, we determined the impact of host mucins and mucin glycans on epithelial entry of SARS-CoV-2. Human lung epithelial Calu-3 cells express the SARS-CoV-2 entry receptor ACE2 and high levels of glycosylated MUC1, but not MUC4 and MUC16, on their cell surface. The O-glycan-specific mucinase StcE specifically removed the glycosylated part of the MUC1 extracellular domain while leaving the underlying SEA domain and cytoplasmic tail intact. StcE treatment of Calu-3 cells significantly enhanced infection with SARS-CoV-2 pseudovirus and authentic virus, while removal of terminal mucin glycans sialic acid and fucose from the epithelial surface did not impact viral entry. In Calu-3 cells, the transmembrane mucin MUC1 and ACE2 are located to the apical surface in close proximity and StcE treatment results in enhanced binding of purified spike protein. Both MUC1 and MUC16 are expressed on the surface of human organoid-derived air-liquid interface (ALI) differentiated airway cultures and StcE treatment led to mucin removal and increased levels of SARS-CoV-2 replication. In these cultures, MUC1 was highly expressed in non-ciliated cells while MUC16 was enriched in goblet cells. In conclusion, the glycosylated extracellular domains of different transmembrane mucins might have similar protective functions in different respiratory cell types by restricting SARS-CoV-2 binding and entry.


Subject(s)
COVID-19 , Mucins , Humans , Mucins/metabolism , Angiotensin-Converting Enzyme 2 , SARS-CoV-2/metabolism , CA-125 Antigen/metabolism , Lung/metabolism , Polysaccharides
7.
Viruses ; 15(7)2023 07 12.
Article in English | MEDLINE | ID: mdl-37515217

ABSTRACT

Stray cats can host (zoonotic) viral pathogens and act as a source of infection for domestic cats or humans. In this cross-sectional (sero)prevalence study, sera from 580 stray cats living in 56 different cat groups in rural areas in The Netherlands were collected from October 2020 to July 2022. These were used to investigate the prevalence of the cat-specific feline leukemia virus (FeLV, n = 580), the seroprevalence of the cat-specific feline viruses feline immunodeficiency virus (FIV, n = 580) and feline coronavirus (FCoV, n = 407), and the zoonotic virus severe acute respiratory coronavirus-2 (SARS-CoV-2, n = 407) using enzyme-linked immunosorbent assays (ELISAs). ELISA-positive results were confirmed using Western blot (FIV) or pseudovirus neutralization test (SARS-CoV-2). The FIV seroprevalence was 5.0% (95% CI (Confidence Interval) 3.4-7.1) and ranged from 0-19.0% among groups. FIV-specific antibodies were more often detected in male cats, cats ≥ 3 years and cats with reported health problems. No FeLV-positive cats were found (95% CI 0.0-0.6). The FCoV seroprevalence was 33.7% (95% CI 29.1-38.5) and ranged from 4.7-85.7% among groups. FCoV-specific antibodies were more often detected in cats ≥ 3 years, cats with reported health problems and cats living in industrial areas or countryside residences compared to cats living at holiday parks or campsites. SARS-CoV-2 antibodies against the subunit 1 (S1) and receptor binding domain (RBD) protein were detected in 2.7% (95% CI 1.4-4.8) of stray cats, but sera were negative in the pseudovirus neutralization test and therefore were considered SARS-CoV-2 suspected. Our findings suggest that rural stray cats in The Netherlands can be a source of FIV and FCoV, indicating a potential risk for transmission to other cats, while the risk for FeLV is low. However, suspected SARS-CoV-2 infections in these cats were uncommon. We found no evidence of SARS-CoV-2 cat-to-cat spread in the studied stray cat groups and consider the likelihood of spillover to humans as low.


Subject(s)
COVID-19 , Cat Diseases , Immunodeficiency Virus, Feline , Leukemia, Feline , Humans , Animals , Cats , Male , Retroviridae , SARS-CoV-2 , Seroepidemiologic Studies , Netherlands/epidemiology , Cross-Sectional Studies , COVID-19/epidemiology , Leukemia Virus, Feline , Antibodies, Viral , Cat Diseases/epidemiology
8.
Front Immunol ; 14: 1204834, 2023.
Article in English | MEDLINE | ID: mdl-37359531

ABSTRACT

Introduction: The emergency use of vaccines has been the most efficient way to control the coronavirus disease 19 (COVID-19) pandemic. However, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern has reduced the efficacy of currently used vaccines. The receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein is the main target for virus neutralizing (VN) antibodies. Methods: A SARS-CoV-2 RBD vaccine candidate was produced in the Thermothelomyces heterothallica (formerly, Myceliophthora thermophila) C1 protein expression system and coupled to a nanoparticle. Immunogenicity and efficacy of this vaccine candidate was tested using the Syrian golden hamster (Mesocricetus auratus) infection model. Results: One dose of 10-µg RBD vaccine based on SARS-CoV-2 Wuhan strain, coupled to a nanoparticle in combination with aluminum hydroxide as adjuvant, efficiently induced VN antibodies and reduced viral load and lung damage upon SARS-CoV-2 challenge infection. The VN antibodies neutralized SARS-CoV-2 variants of concern: D614G, Alpha, Beta, Gamma, and Delta. Discussion: Our results support the use of the Thermothelomyces heterothallica C1 protein expression system to produce recombinant vaccines against SARS-CoV-2 and other virus infections to help overcome limitations associated with the use of mammalian expression system.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Cricetinae , Humans , COVID-19/prevention & control , SARS-CoV-2/genetics , Adjuvants, Immunologic , Antibodies, Blocking , Fungi , Mesocricetus
9.
Proc Natl Acad Sci U S A ; 120(26): e2303292120, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37339194

ABSTRACT

The ongoing COVID-19 pandemic has had great societal and health consequences. Despite the availability of vaccines, infection rates remain high due to immune evasive Omicron sublineages. Broad-spectrum antivirals are needed to safeguard against emerging variants and future pandemics. We used messenger RNA (mRNA) display under a reprogrammed genetic code to find a spike-targeting macrocyclic peptide that inhibits SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) Wuhan strain infection and pseudoviruses containing spike proteins of SARS-CoV-2 variants or related sarbecoviruses. Structural and bioinformatic analyses reveal a conserved binding pocket between the receptor-binding domain, N-terminal domain, and S2 region, distal to the angiotensin-converting enzyme 2 receptor-interaction site. Our data reveal a hitherto unexplored site of vulnerability in sarbecoviruses that peptides and potentially other drug-like molecules can target.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Pandemics/prevention & control , Peptides/pharmacology
10.
Front Immunol ; 14: 1111385, 2023.
Article in English | MEDLINE | ID: mdl-36895554

ABSTRACT

Emerging SARS-CoV-2 variants have accrued mutations within the spike protein rendering most therapeutic monoclonal antibodies against COVID-19 ineffective. Hence there is an unmet need for broad-spectrum mAb treatments for COVID-19 that are more resistant to antigenically drifted SARS-CoV-2 variants. Here we describe the design of a biparatopic heavy-chain-only antibody consisting of six antigen binding sites recognizing two distinct epitopes in the spike protein NTD and RBD. The hexavalent antibody showed potent neutralizing activity against SARS-CoV-2 and variants of concern, including the Omicron sub-lineages BA.1, BA.2, BA.4 and BA.5, whereas the parental components had lost Omicron neutralization potency. We demonstrate that the tethered design mitigates the substantial decrease in spike trimer affinity seen for escape mutations for the hexamer components. The hexavalent antibody protected against SARS-CoV-2 infection in a hamster model. This work provides a framework for designing therapeutic antibodies to overcome antibody neutralization escape of emerging SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Immunoglobulin Heavy Chains/genetics , Antibodies, Monoclonal
11.
Avian Pathol ; 52(3): 157-167, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36745131

ABSTRACT

Infectious bronchitis virus (IBV) is an avian pathogen from the Coronavirus family causing major health issues in poultry flocks worldwide. Because of its negative impact on health, performance, and bird welfare, commercial poultry are routinely vaccinated by administering live attenuated virus. However, field strains are capable of rapid adaptation and may evade vaccine-induced immunity. We set out to describe dynamics within and between lineages and assess potential escape from vaccine-induced immunity. We investigated a large nucleotide sequence database of over 1700 partial sequences of the S1 spike protein gene collected from clinical samples of Dutch chickens submitted to the laboratory of Royal GD between 2011 and 2020. Relative frequencies of the two major lineages GI-13 (793B) and GI-19 (QX) did not change in the investigated period, but we found a succession of distinct GI-19 sublineages. Analysis of dN/dS ratio over all sequences demonstrated episodic diversifying selection acting on multiple sites, some of which overlap predicted N-glycosylation motifs. We assessed several measures that would indicate divergence from vaccine strains, both in the overall database and in the two major lineages. However, the frequency of vaccine-homologous lineages did not decrease, no increase in genetic variation with time was detected, and the sequences did not grow more divergent from vaccine sequences in the examined time window. Concluding, our results show sublineage turnover within the GI-19 lineage and we demonstrate episodic diversifying selection acting on the partial sequence, but we cannot confirm nor rule out escape from vaccine-induced immunity.RESEARCH HIGHLIGHTSSuccession of GI-19 IBV variants in broiler populations.IBV lineages overrepresented in either broiler, or layer production chickens.Ongoing episodic selection at the IBV S1 spike protein gene sequence.Several positively selected codons coincident with N-glycosylation motifs.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Viral Vaccines , Animals , Poultry , Chickens , Infectious bronchitis virus/genetics , Spike Glycoprotein, Coronavirus/genetics , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Poultry Diseases/prevention & control
12.
Emerg Infect Dis ; 29(3): 585-589, 2023 03.
Article in English | MEDLINE | ID: mdl-36823022

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) clade B viruses are found in camelids and humans in the Middle East, but clade C viruses are not. We provide experimental evidence for extended shedding of MERS-CoV clade B viruses in llamas, which might explain why they outcompete clade C strains in the Arabian Peninsula.


Subject(s)
Camelids, New World , Coronavirus Infections , Herpesvirus 1, Cercopithecine , Middle East Respiratory Syndrome Coronavirus , Animals , Humans , Virus Shedding , Camelus
13.
Viruses ; 15(1)2023 01 12.
Article in English | MEDLINE | ID: mdl-36680252

ABSTRACT

SARS-CoV-2 prevention and control measures did not only impact SARS-CoV-2 circulation, but also the timing and prevalence of other seasonal respiratory viruses. Especially in children, information on exposure and infections to seasonal coronaviruses as well as SARS-CoV-2 in the first year of the pandemic is largely lacking. Therefore, we set up a one-year serological survey in a large tertiary hospital in the Netherlands. We show that seasonal coronavirus seroprevalence significantly decreased in 2021 in children less than one year, most likely due to COVID-19 control measures. The SARS-CoV-2 seroprevalence in children and adolescents increased from 0.4% to 11.3%, the highest in adolescents. This implies higher exposure rates in adolescents as compared to the general population (>18 years old). It is clear that there have been significant changes in the circulation and subsequent immunity against most respiratory pathogens as a result of the mitigation measures. The implications on shorter as well as longer term are still largely unknown, but the impact of the SARS-CoV-2 pandemic and subsequent control measures will continue to affect the dynamics of other pathogens.


Subject(s)
COVID-19 , Adolescent , Humans , Child , COVID-19/epidemiology , COVID-19/prevention & control , Netherlands/epidemiology , Antibody Formation , Seasons , Seroepidemiologic Studies , SARS-CoV-2 , Antibodies, Viral
14.
Vaccine ; 40(33): 4676-4681, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35820941

ABSTRACT

The emergence of SARS-CoV-2 in December 2019 resulted in the COVID-19 pandemic. Recurring disease outbreaks repeatedly overloaded the public health sector and severely affected the global economy. We developed a candidate COVID-19 vaccine based on a recombinant Newcastle disease virus (NDV) vaccine vector, encoding a pre-fusion stabilized full-length Spike protein obtained from the original SARS-CoV-2 Wuhan isolate. Vaccination of hamsters by intra-muscular injection or intra-nasal instillation induced high neutralizing antibody responses. Intranasal challenge infection with SARS-CoV-2 strain Lelystad demonstrated that both vaccination routes provided partial protection in the upper respiratory tract, and almost complete protection in the lower respiratory tract, as measured by suppressed viral loads and absence of histological lung lesions. Activity wheel measurements demonstrated that animals vaccinated by intranasal inoculation rapidly recovered to normal activity. NDV constructs encoding the spike of SARS-CoV-2 may be attractive candidates for development of intra-nasal COVID-19 booster vaccines.


Subject(s)
COVID-19 , Viral Vaccines , Administration, Intranasal , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Cricetinae , Humans , Newcastle disease virus/genetics , Pandemics/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic/genetics
15.
One Health Outlook ; 4(1): 12, 2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35739576

ABSTRACT

Ongoing outbreaks of Middle East respiratory syndrome coronavirus (MERS-CoV) continue posing a global health threat. Vaccination of livestock reservoir species is a recommended strategy to prevent spread of MERS-CoV among animals and potential spillover to humans. Using a direct-contact llama challenge model that mimics naturally occurring viral transmission, we tested the efficacy of a multimeric receptor binding domain (RBD) particle-display based vaccine candidate. While MERS-CoV was transmitted to naïve animals exposed to virus-inoculated llamas, immunization induced robust virus-neutralizing antibody responses and prevented transmission in 1/3 vaccinated, in-contact animals. Our exploratory study supports further improvement of the RBD-based vaccine to prevent zoonotic spillover of MERS-CoV.

16.
Nat Commun ; 13(1): 2921, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614127

ABSTRACT

Human coronavirus OC43 is a globally circulating common cold virus sustained by recurrent reinfections. How it persists in the population and defies existing herd immunity is unknown. Here we focus on viral glycoprotein S, the target for neutralizing antibodies, and provide an in-depth analysis of its antigenic structure. Neutralizing antibodies are directed to the sialoglycan-receptor binding site in S1A domain, but, remarkably, also to S1B. The latter block infection yet do not prevent sialoglycan binding. While two distinct neutralizing S1B epitopes are readily accessible in the prefusion S trimer, other sites are occluded such that their accessibility must be subject to conformational changes in S during cell-entry. While non-neutralizing antibodies were broadly reactive against a collection of natural OC43 variants, neutralizing antibodies generally displayed restricted binding breadth. Our data provide a structure-based understanding of protective immunity and adaptive evolution for this endemic coronavirus which emerged in humans long before SARS-CoV-2.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Coronavirus OC43, Human/metabolism , Epitopes , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
17.
Sci Immunol ; 7(73): eabp9312, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35471062

ABSTRACT

The ongoing evolution of SARS-CoV-2 has resulted in the emergence of Omicron, which displays notable immune escape potential through mutations at key antigenic sites on the spike protein. Many of these mutations localize to the spike protein ACE2 receptor binding domain, annulling the neutralizing activity of therapeutic antibodies that were effective against other variants of concern (VOCs) earlier in the pandemic. Here, we identified a receptor-blocking human monoclonal antibody, 87G7, that retained potent in vitro neutralizing activity against SARS-CoV-2 variants including the Alpha, Beta, Gamma, Delta, and Omicron (BA.1/BA.2) VOCs. Using cryo-electron microscopy and site-directed mutagenesis experiments, we showed that 87G7 targets a patch of hydrophobic residues in the ACE2-binding site that are highly conserved in SARS-CoV-2 variants, explaining its broad neutralization capacity. 87G7 protected mice and hamsters prophylactically against challenge with all current SARS-CoV-2 VOCs and showed therapeutic activity against SARS-CoV-2 challenge in both animal models. Our findings demonstrate that 87G7 holds promise as a prophylactic or therapeutic agent for COVID-19 that is more resilient to SARS-CoV-2 antigenic diversity.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Animals , Antibodies, Neutralizing/pharmacology , Cryoelectron Microscopy , Humans , Membrane Glycoproteins , Mice , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
18.
MAbs ; 14(1): 2052228, 2022.
Article in English | MEDLINE | ID: mdl-35323099

ABSTRACT

Transgenic human monoclonal antibodies derived from humanized mice against different epitopes of the Middle East respiratory syndrome coronavirus (MERS-CoV), and chimeric llama-human bispecific heavy chain-only antibodies targeting the Rift Valley fever virus (RVFV), were produced using a CHO-based transient expression system. Two lead candidates were assessed for each model virus before selecting and progressing one lead molecule. MERS-7.7G6 was used as the model antibody to demonstrate batch-to-batch process consistency and, together with RVFV-107-104, were scaled up to 200 L. Consistent expression titers were obtained in different batches at a 5 L scale for MERS-7.7G6. Although lower expression levels were observed for MERS-7.7G6 and RVFV-107-104 during scale up to 200 L, product quality attributes were consistent at different scales and in different batches. In addition to this, peptide mapping data suggested no detectable sequence variants for any of these candidates. Functional assays demonstrated comparable neutralizing activity for MERS-7.7G6 and RVFV-107-104 generated at different production scales. Similarly, MERS-7.7G6 batches generated at different scales were shown to provide comparable protection in mouse models. Our study demonstrates that a CHO-based transient expression process is capable of generating consistent product quality at different production scales and thereby supports the potential of using transient gene expression to accelerate the manufacturing of early clinical material.


Subject(s)
Antibodies, Neutralizing , Middle East Respiratory Syndrome Coronavirus , Animals , Antibodies, Monoclonal/genetics , Antibodies, Viral , Epitopes , Mice , Middle East Respiratory Syndrome Coronavirus/genetics
19.
Biologicals ; 74: 10-15, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34736782

ABSTRACT

The Zoonoses Anticipation and Preparedness Initiative (ZAPI) was set up to prepare for future outbreaks and to develop and implement new technologies to accelerate development and manufacturing of vaccines and monoclonal antibodies. To be able to achieve surge capacity, an easy deployment and production at multiple sites is needed. This requires a straightforward manufacturing system with a limited number of steps in upstream and downstream processes, a minimum number of in vitro Quality Control assays, and robust and consistent platforms. Three viruses were selected as prototypes: Middle East Respiratory Syndrome (MERS) coronavirus, Rift Valley fever virus, and Schmallenberg virus. Selected antibodies against the viral surface antigens were manufactured by transient gene expression in Chinese Hamster Ovary (CHO) cells, scaling up to 200 L. For vaccine production, viral antigens were fused to multimeric protein scaffold particles using the SpyCatcher/SpyTag system. In vivo models demonstrated the efficacy of both antibodies and vaccines. The final step in speeding up vaccine (and antibody) development is the regulatory appraisal of new platform technologies. Towards this end, within ZAPI, a Platform Master File (PfMF) was developed, as part of a licensing dossier, to facilitate and accelerate the scientific assessment by avoiding repeated discussion of already accepted platforms. The veterinary PfMF was accepted, whereas the human PfMF is currently under review by the European Medicines Agency, aiming for publication of the guideline by January 2022.


Subject(s)
Coronavirus Infections , Viral Vaccines , Zoonoses , Animals , Antibodies, Viral , Antigens, Viral , CHO Cells , Congresses as Topic , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Cricetinae , Cricetulus , Humans , Middle East Respiratory Syndrome Coronavirus , Rift Valley fever virus , Zoonoses/prevention & control
20.
Cell Rep ; 37(2): 109814, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34599871

ABSTRACT

Control of the ongoing SARS-CoV-2 pandemic is endangered by the emergence of viral variants with increased transmission efficiency, resistance to marketed therapeutic antibodies, and reduced sensitivity to vaccine-induced immunity. Here, we screen B cells from COVID-19 donors and identify P5C3, a highly potent and broadly neutralizing monoclonal antibody with picomolar neutralizing activity against all SARS-CoV-2 variants of concern (VOCs) identified to date. Structural characterization of P5C3 Fab in complex with the spike demonstrates a neutralizing activity defined by a large buried surface area, highly overlapping with the receptor-binding domain (RBD) surface necessary for ACE2 interaction. We further demonstrate that P5C3 shows complete prophylactic protection in the SARS-CoV-2-infected hamster challenge model. These results indicate that P5C3 opens exciting perspectives either as a prophylactic agent in immunocompromised individuals with poor response to vaccination or as combination therapy in SARS-CoV-2-infected individuals.


Subject(s)
Broadly Neutralizing Antibodies/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Cell Line , Cricetinae , Disease Models, Animal , Epitopes/immunology , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Neutralization Tests , Protein Binding/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/ultrastructure , Structure-Activity Relationship , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...