Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Article in English | MEDLINE | ID: mdl-36862522

ABSTRACT

Background: Glycosylphosphatidylinositol-anchored protein deficiencies (GPI-ADs) are commonly associated with drug-resistant epilepsy (DRE). Cannabidiol (CBD) is approved for the adjunctive treatment of seizures in Dravet/Lennox-Gastaut Syndromes and Tuberous Sclerosis Complex. We report on the efficacy and safety of CBD for the treatment of DRE in patients with genetically proven GPI-AD. Patients and Methods: Patients received add-on treatment with purified GW-pharma CBD (Epidyolex®). Efficacy endpoints were the percentage of patients with ≥50% (responders) or >25<50% (partial responders) reduction in monthly seizures from baseline and at 12 (M12) months of follow-up. Safety was evaluated through adverse events (AEs) monitoring. Results: Six patients (5 males) were enrolled. The median age at seizures onset was 5 months and the syndromic diagnosis was early infantile developmental and epileptic encephalopathy in 4 patients and focal non-lesional epilepsy or GEFS+ in one patient each. Five out of six (83%) patients were responders at M12, while one was a partial responder. No severe AEs were reported. Mean prescribed CBD dose was 17.85 mg/kg/day and median treatment duration is currently 27 months. Conclusions: In summary, off-label treatment with CBD was effective and safe in patients with DRE due to GPI-ADs.

2.
Epilepsia ; 61(6): 1142-1155, 2020 06.
Article in English | MEDLINE | ID: mdl-32452540

ABSTRACT

OBJECTIVE: To define the phenotypic spectrum of phosphatidylinositol glycan class A protein (PIGA)-related congenital disorder of glycosylation (PIGA-CDG) and evaluate genotype-phenotype correlations. METHODS: Our cohort encompasses 40 affected males with a pathogenic PIGA variant. We performed a detailed phenotypic assessment, and in addition, we reviewed the available clinical data of 36 previously published cases and assessed the variant pathogenicity using bioinformatical approaches. RESULTS: Most individuals had hypotonia, moderate to profound global developmental delay, and intractable seizures. We found that PIGA-CDG spans from a pure neurological phenotype at the mild end to a Fryns syndrome-like phenotype. We found a high frequency of cardiac anomalies including structural anomalies and cardiomyopathy, and a high frequency of spontaneous death, especially in childhood. Comparative bioinformatical analysis of common variants, found in the healthy population, and pathogenic variants, identified in affected individuals, revealed a profound physiochemical dissimilarity of the substituted amino acids in variant constrained regions of the protein. SIGNIFICANCE: Our comprehensive analysis of the largest cohort of published and novel PIGA patients broadens the spectrum of PIGA-CDG. Our genotype-phenotype correlation facilitates the estimation on pathogenicity of variants with unknown clinical significance and prognosis for individuals with pathogenic variants in PIGA.


Subject(s)
Genetic Variation/genetics , Hernia, Diaphragmatic/diagnostic imaging , Hernia, Diaphragmatic/genetics , Limb Deformities, Congenital/diagnostic imaging , Limb Deformities, Congenital/genetics , Membrane Proteins/genetics , Adult , Amino Acid Sequence , Child , Cohort Studies , Electroencephalography/methods , Facies , Hernia, Diaphragmatic/physiopathology , Humans , Infant, Newborn , Limb Deformities, Congenital/physiopathology , Magnetic Resonance Imaging/methods , Male
3.
Seizure ; 56: 115-120, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29475094

ABSTRACT

PURPOSE: BECTS (benign childhood epilepsy with centrotemporal spikes) is associated with characteristic EEG findings. This study examines the influence of anti-convulsive treatment on the EEG. METHODS: In a randomized controlled trial including 43 children with BECTS, EEGs were performed prior to treatment with either Sulthiame or Levetiracetam as well as three times under treatment. Using the spike-wave-index, the degree of EEG pathology was quantified. The EEG before and after initiation of treatment was analyzed. Both treatment arms were compared and the EEG of the children that were to develop recurrent seizures was compared with those that were successfully treated. RESULTS: Regardless of the treatment agent, the spike-wave-index was reduced significantly under treatment. There were no differences between the two treatment groups. In an additional analysis, the EEG characteristics of the children with recurrent seizures differed statistically significant from those that did not have any further seizures. CONCLUSION: Both Sulthiame and Levetiracetam influence the EEG of children with BECTS. Persistent EEG pathologies are associated with treatment failures.


Subject(s)
Anticonvulsants/therapeutic use , Brain Waves/drug effects , Epilepsy, Rolandic/drug therapy , Piracetam/analogs & derivatives , Thiazines/therapeutic use , Child , Double-Blind Method , Electroencephalography , Female , Germany , Humans , Levetiracetam , Male , Piracetam/therapeutic use , Retrospective Studies , Statistics, Nonparametric , Treatment Outcome
4.
Neurology ; 87(1): 77-85, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27281533

ABSTRACT

OBJECTIVE: To evaluate the phenotypic spectrum associated with mutations in TBC1D24. METHODS: We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and 37 published patients. TBC1D24 mutations, identified through various sequencing methods, can be found online (http://lovd.nl/TBC1D24). RESULTS: Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30 independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients carried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%), and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness, and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disorders, are not necessarily the most disruptive to this gene function. CONCLUSIONS: TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with multisystem involvement and severity spectrum ranging from isolated deafness (not studied here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal intellect, to early-onset epileptic encephalopathy with severe developmental delay and early death. There is no distinct correlation with mutation type or location yet, but patterns are emerging. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this gene and its associated phenotypes.


Subject(s)
Carrier Proteins/genetics , Epilepsy/genetics , Epilepsy/physiopathology , Animals , Brain/diagnostic imaging , Brain/physiopathology , Carrier Proteins/metabolism , Cell Enlargement , Cells, Cultured , Child , Child, Preschool , Cohort Studies , Electroencephalography , Epilepsy/diagnostic imaging , Epilepsy/psychology , Female , GTPase-Activating Proteins , Genetic Association Studies , Humans , Infant , Male , Membrane Proteins , Mice , Mutation , Nerve Tissue Proteins , Neurites/physiology , Physical Examination , Young Adult
5.
Neuropediatrics ; 47(2): 132-6, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26902182

ABSTRACT

High-fat ketogenic diets are the only treatment available for Glut1 deficiency (Glut1D). Here, we describe an 8-year-old girl with classical Glut1D responsive to a 3:1 ketogenic diet and ethosuximide. After 3 years on the diet a gradual increase of blood lipids was followed by rapid, severe asymptomatic hypertriglyceridemia (1,910 mg/dL). Serum lipid apheresis was required to determine liver, renal, and pancreatic function. A combination of medium chain triglyceride-oil and a reduction of the ketogenic diet to 1:1 ratio normalized triglyceride levels within days but triggered severe myoclonic seizures requiring comedication with sultiam. Severe hypertriglyceridemia in children with Glut1D on ketogenic diets may be underdiagnosed and harmful. In contrast to congenital hypertriglyceridemias, children with Glut1D may be treated effectively by dietary adjustments alone.


Subject(s)
Carbohydrate Metabolism, Inborn Errors/complications , Carbohydrate Metabolism, Inborn Errors/diet therapy , Diet, Ketogenic/adverse effects , Hypertriglyceridemia/complications , Hypertriglyceridemia/diagnosis , Monosaccharide Transport Proteins/deficiency , Child , Female , Glucose Transporter Type 1/deficiency , Humans
6.
Hum Mutat ; 28(1): 19-26, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17068770

ABSTRACT

Patients with pyridoxine dependent epilepsy (PDE) present with early-onset seizures resistant to common anticonvulsants. According to the benefit of pyridoxine (vitamin B(6)) and recurrence of seizures on pyridoxine withdrawal, patients so far have been classified as having definite, probable, or possible PDE. Recently, PDE has been shown to be caused by a defect of alpha-amino adipic semialdehyde (AASA) dehydrogenase (antiquitin) in the cerebral lysine degradation pathway. The accumulating compound piperideine-6-carboxylic acid (P6C) was shown to inactivate pyridoxalphosphate (PLP) by a Knoevenagel condensation. Pipecolic acid (PA) and AASA are markedly elevated in urine, plasma, and cerebrospinal fluid (CSF) and thus can be used as biomarkers of the disease. We have investigated 18 patients with neonatal seizure onset, who have been classified as having definite (11), probable (four), or possible (three) PDE. All patients had elevated PA and AASA in plasma (and urine) while on treatment with individual dosages of pyridoxine. Within this cohort, molecular analysis identified 10 novel mutations (six missense mutations, one nonsense mutation, two splice site mutations) within highly conserved regions of the antiquitin gene. Seven mutations were located in exonic sequences and two in introns 7 and 17. Furthermore, a novel deletion of exon 7 was identified. Two of the 36 alleles investigated require further investigation. A known mutation (p.Glu399Gln) was found with marked prevalence, accounting for 12 out of 36 alleles (33%) within our cohort. Pyridoxine withdrawal is no longer needed to establish the diagnosis of "definite" PDE. Administration of pyridoxine in PDE may not only correct secondary PLP deficiency, but may also lead to a reduction of AASA (and P6C) as presumably toxic compounds.


Subject(s)
Aldehyde Dehydrogenase/genetics , Epilepsy/drug therapy , Epilepsy/genetics , Pyridoxine/therapeutic use , Amino Acid Sequence , DNA Mutational Analysis , Female , Humans , Infant, Newborn , Male , Models, Biological , Mutation , Pyridoxal Phosphate/deficiency , Sequence Homology, Amino Acid , Vitamin B 6 Deficiency/genetics
7.
Ann Neurol ; 54(6): 719-24, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14681881

ABSTRACT

Autosomal recessive spinal muscular atrophy with respiratory distress type 1 (SMARD1) is the second anterior horn cell disease in infants in which the genetic defect has been defined. SMARD1 results from mutations in the gene encoding the immunoglobulin micro-binding protein 2 (IGHMBP2) on chromosome 11q13. Our aim was to review the clinical features of 29 infants affected with SMARD1 and report on 26 novel IGHMBP2 mutations. Intrauterine growth retardation, weak cry, and foot deformities were the earliest symptoms of SMARD1. Most patients presented at the age of 1 to 6 months with respiratory distress due to diaphragmatic paralysis and progressive muscle weakness with predominantly distal lower limb muscle involvement. Sensory and autonomic nerves are also affected. Because of the poor prognosis, there is a demand for prenatal diagnosis, and clear diagnostic criteria for infantile SMARD1 are needed. The diagnosis of SMARD1 should be considered in infants with non-5q spinal muscular atrophy, neuropathy, and muscle weakness and/or respiratory distress of unclear cause. Furthermore, consanguineous parents of a child with sudden infant death syndrome should be examined for IGHMBP2 mutations.


Subject(s)
Carrier Proteins/genetics , DNA-Binding Proteins , Respiratory Distress Syndrome, Newborn/complications , Respiratory Distress Syndrome, Newborn/genetics , Spinal Muscular Atrophies of Childhood/complications , Spinal Muscular Atrophies of Childhood/genetics , Transcription Factors , Female , Humans , Infant , Infant, Newborn , Male , Mutation , Respiratory Distress Syndrome, Newborn/physiopathology , Spinal Muscular Atrophies of Childhood/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...