Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomed Res ; 38(4): 397-412, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807380

ABSTRACT

Given the extremely high inter-patient heterogeneity of acute myeloid leukemia (AML), the identification of biomarkers for prognostic assessment and therapeutic guidance is critical. Cell surface markers (CSMs) have been shown to play an important role in AML leukemogenesis and progression. In the current study, we evaluated the prognostic potential of all human CSMs in 130 AML patients from The Cancer Genome Atlas (TCGA) based on differential gene expression analysis and univariable Cox proportional hazards regression analysis. By using multi-model analysis, including Adaptive LASSO regression, LASSO regression, and Elastic Net, we constructed a 9-CSMs prognostic model for risk stratification of the AML patients. The predictive value of the 9-CSMs risk score was further validated at the transcriptome and proteome levels. Multivariable Cox regression analysis showed that the risk score was an independent prognostic factor for the AML patients. The AML patients with high 9-CSMs risk scores had a shorter overall and event-free survival time than those with low scores. Notably, single-cell RNA-sequencing analysis indicated that patients with high 9-CSMs risk scores exhibited chemotherapy resistance. Furthermore, PI3K inhibitors were identified as potential treatments for these high-risk patients. In conclusion, we constructed a 9-CSMs prognostic model that served as an independent prognostic factor for the survival of AML patients and held the potential for guiding drug therapy.

2.
Nat Commun ; 14(1): 5590, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37696831

ABSTRACT

Male breast cancer (MBC) is a rare but aggressive malignancy with cellular and immunological characteristics that remain unclear. Here, we perform transcriptomic analysis for 111,038 single cells from tumor tissues of six MBC and thirteen female breast cancer (FBC) patients. We find that that MBC has significantly lower infiltration of T cells relative to FBC. Metastasis-related programs are more active in cancer cells from MBC. The activated fatty acid metabolism involved with FASN is related to cancer cell metastasis and low immune infiltration of MBC. T cells in MBC show activation of p38 MAPK and lipid oxidation pathways, indicating a dysfunctional state. In contrast, T cells in FBC exhibit higher expression of cytotoxic markers and immune activation pathways mediated by immune-modulatory cytokines. Moreover, we identify the inhibitory interactions between cancer cells and T cells in MBC. Our study provides important information for understanding the tumor immunology and metabolism of MBC.


Subject(s)
Breast Neoplasms, Male , Humans , Female , Male , Single-Cell Gene Expression Analysis , Immunosuppression Therapy , Lipid Metabolism/genetics , Fatty Acids
3.
Neural Regen Res ; 18(9): 2037-2046, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36926730

ABSTRACT

Previous studies have found that deficiency in nuclear receptor-related factor 1 (Nurr1), which participates in the development, differentiation, survival, and degeneration of dopaminergic neurons, is associated with Parkinson's disease, but the mechanism of action is perplexing. Here, we first ascertained the repercussion of knocking down Nurr1 by performing liquid chromatography coupled with tandem mass spectrometry. We found that 231 genes were highly expressed in dopaminergic neurons with Nurr1 deficiency, 14 of which were linked to the Parkinson's disease pathway based on Kyoto Encyclopedia of Genes and Genomes analysis. To better understand how Nurr1 deficiency autonomously invokes the decline of dopaminergic neurons and elicits Parkinson's disease symptoms, we performed single-nuclei RNA sequencing in a Nurr1 LV-shRNA mouse model. The results revealed cellular heterogeneity in the substantia nigra and a number of activated genes, the preponderance of which encode components of the major histocompatibility II complex. Cd74, H2-Ab1, H2-Aa, H2-Eb1, Lyz2, Mrc1, Slc6a3, Slc47a1, Ms4a4b, and Ptprc2 were the top 10 differentially expressed genes. Immunofluorescence staining showed that, after Nurr1 knockdown, the number of CD74-immunoreactive cells in mouse brain tissue was markedly increased. In addition, Cd74 expression was increased in a mouse model of Parkinson's disease induced by treatment with 6-hydroxydopamine. Taken together, our results suggest that Nurr1 deficiency results in an increase in Cd74 expression, thereby leading to the destruction of dopaminergic neurons. These findings provide a potential therapeutic target for the treatment of Parkinson's disease.

4.
Leukemia ; 37(2): 308-325, 2023 02.
Article in English | MEDLINE | ID: mdl-36543880

ABSTRACT

Chemoresistance and relapse are the leading cause of AML-related deaths. Utilizing single-cell RNA sequencing (scRNA-seq), we dissected the cellular states of bone marrow samples from primary refractory or short-term relapsed AML patients and defined the transcriptional intratumoral heterogeneity. We found that compared to proliferating stem/progenitor-like cells (PSPs), a subpopulation of quiescent stem-like cells (QSCs) were involved in the chemoresistance and poor outcomes of AML. By performing longitudinal scRNA-seq analyses, we demonstrated that PSPs were reprogrammed to obtain a QSC-like expression pattern during chemotherapy in refractory AML patients, characterized by the upregulation of CD52 and LGALS1 expression. Flow cytometric analysis further confirmed that the preexisting CD99+CD49d+CD52+Galectin-1+ (QSCs) cells at diagnosis were associated with chemoresistance, and these cells were further enriched in the residual AML cells of refractory patients. Interaction of CD52-SIGLEC10 between QSCs and monocytes may contribute to immune evading and poor outcomes. Furthermore, we identified that LGALS1 was a promising target for chemoresistant AML, and LGALS1 inhibitor could help eliminate QSCs and enhance the chemotherapy in patient-derived primary AML cells, cell lines, and AML xenograft models. Our results will facilitate a better understanding of the AML chemoresistance mechanism and the development of novel therapeutic strategies for relapsed/refractory AML patients.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Galectin 1/genetics , Galectin 1/therapeutic use , Cellular Reprogramming , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Antineoplastic Agents/therapeutic use , Single-Cell Analysis
5.
Nat Commun ; 11(1): 6044, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33247152

ABSTRACT

Deciphering the dynamic changes in antibodies against SARS-CoV-2 is essential for understanding the immune response in COVID-19 patients. Here we analyze the laboratory findings of 1,850 patients to describe the dynamic changes of the total antibody, spike protein (S)-, receptor-binding domain (RBD)-, and nucleoprotein (N)-specific immunoglobulin M (IgM) and G (IgG) levels during SARS-CoV-2 infection and recovery. The generation of S-, RBD-, and N-specific IgG occurs one week later in patients with severe/critical COVID-19 compared to patients with mild/moderate disease, while S- and RBD-specific IgG levels are 1.5-fold higher in severe/critical patients during hospitalization. The RBD-specific IgG levels are 4-fold higher in older patients than in younger patients during hospitalization. In addition, the S- and RBD-specific IgG levels are 2-fold higher in the recovered patients who are SARS-CoV-2 RNA negative than those who are RNA positive. Lower S-, RBD-, and N-specific IgG levels are associated with a lower lymphocyte percentage, higher neutrophil percentage, and a longer duration of viral shedding. Patients with low antibody levels on discharge might thereby have a high chance of being tested positive for SARS-CoV-2 RNA after recovery. Our study provides important information for COVID-19 diagnosis, treatment, and vaccine development.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/diagnosis , COVID-19/mortality , COVID-19 Testing/methods , COVID-19 Testing/statistics & numerical data , Child , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , Pandemics , Protein Domains/immunology , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Survivors/statistics & numerical data , Virus Shedding/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL