Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (196)2023 06 30.
Article in English | MEDLINE | ID: mdl-37458466

ABSTRACT

Wastewater-based epidemiology has emerged as a promising and efficacious surveillance system for SARS-CoV-2 and other infectious diseases in many nations. The process typically involves wastewater concentration, nucleic acid extraction, amplification of selected genomic segments, and detection and quantification of the amplified genomic segment. This methodology can similarly be leveraged to detect and quantify infectious agents, such as SARS-CoV-2, in air samples. Initially, SARS-CoV-2 was presumed to spread primarily through close personal contact with droplets generated by an infected individual while speaking, sneezing, coughing, singing, or breathing. However, a growing number of studies have reported the presence of SARS-CoV-2 RNA in the air of healthcare facilities, establishing airborne transmission as a viable route for the virus. This study presents a composite of established protocols to facilitate environmental detection, quantification, and sequencing of viruses from both wastewater and air samples.


Subject(s)
COVID-19 , Nucleic Acids , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Wastewater
2.
Microorganisms ; 11(4)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37110383

ABSTRACT

Bats are natural hosts of various coronaviruses (CoVs), including human CoVs, via an assumed direct zoonotic spillover or intermediate animal host. The present study aimed to investigate the circulation of CoVs in a bat colony in the Mediterranean region of Croatia. Guano and individual droppings from four bat species were sampled and tested with the E-gene sarbecovirus RT-qPCR, the pan-CoV semi-nested RT-PCR targeting the RdRp gene and NGS. Furthermore, bat blood samples were investigated for the presence of sarbecovirus-specific antibodies with the surrogate virus neutralization test (sVNT). The initial testing showed E-gene Sarebeco RT-qPCR reactivity in 26% of guano samples while the bat droppings tested negative. The application of RdRp semi-nested RT-PCR and NGS revealed the circulation of bat alpha- and betaCoVs. Phylogenetic analysis confirmed the clustering of betaCoV sequence with SARS-CoV-related bat sarbecoviruses and alpha-CoV sequences with representatives of the Minunacovirus subgenus. The results of sVNT show that 29% of bat sera originated from all four species that tested positive. Our results are the first evidence of the circulation of SARS-CoV-related coronaviruses in bats from Croatia.

SELECTION OF CITATIONS
SEARCH DETAIL
...