Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
1.
Clin Auton Res ; 34(1): 191-201, 2024 02.
Article in English | MEDLINE | ID: mdl-38064009

ABSTRACT

PURPOSE: Guanfacine is an α2A-adrenergic receptor agonist, FDA-approved to treat attention-deficit hyperactivity disorder and high blood pressure, typically as an extended-release formulation up to 7 mg/day. In our dysautonomia clinic, we observed that off-label use of short-acting guanfacine at 1 mg/day facilitated symptom relief in two families with multiple members presenting with severe generalized anxiety. We also noted anecdotal improvements in associated dysautonomia symptoms such as hyperhidrosis, cognitive impairment, and palpitations. We postulated that a genetic deficit existed in these patients that might augment guanfacine susceptibility. METHODS: We used whole-exome sequencing to identify mutations in patients with shared generalized anxiety and dysautonomia symptoms. Guanfacine-induced changes in the function of voltage-gated Na+ channels were investigated using voltage-clamp electrophysiology. RESULTS: Whole-exome sequencing uncovered the p.I739V mutation in SCN9A in the proband of two nonrelated families. Moreover, guanfacine inhibited ionic currents evoked by wild-type and mutant NaV1.7 encoded by SCN9A, as well as other NaV channel subtypes to a varying degree. CONCLUSION: Our study provides further evidence for a possible pathophysiological role of NaV1.7 in anxiety and dysautonomia. Combined with off-target effects on NaV channel function, daily administration of 1 mg short-acting guanfacine may be sufficient to normalize NaV channel mutation-induced changes in sympathetic activity, perhaps aided by partial inhibition of NaV1.7 or other channel subtypes. In a broader context, expanding genetic and functional data about ion channel aberrations may enable the prospect of stratifying patients in which mutation-induced increased sympathetic tone normalization by guanfacine can support treatment strategies for anxiety and dysautonomia symptoms.


Subject(s)
Autonomic Nervous System Diseases , Guanfacine , Humans , Guanfacine/therapeutic use , NAV1.7 Voltage-Gated Sodium Channel/genetics , Mutation , Anxiety/drug therapy , Anxiety/genetics , Adrenergic alpha-Agonists
2.
Biomed Pharmacother ; 165: 115173, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37453200

ABSTRACT

Nav1.1 is an important pharmacological target as this voltage-gated sodium channel is involved in neurological and cardiac syndromes. Channel activators are actively sought to try to compensate for haploinsufficiency in several of these pathologies. Herein we used a natural source of new peptide compounds active on ion channels and screened for drugs capable to inhibit channel inactivation as a way to compensate for decreased channel function. We discovered that JzTx-34 is highly active on Nav1.1 and subsequently performed a full structure-activity relationship investigation to identify its pharmacophore. These experiments will help interpret the mechanism of action of this and formerly identified peptides as well as the future identification of new peptides. We also reveal structural determinants that make natural ICK peptides active against Nav1.1 challenging to synthesize. Altogether, the knowledge gained by this study will help facilitate the discovery and development of new compounds active on this critical ion channel target.


Subject(s)
Peptides , Voltage-Gated Sodium Channels , Humans , Peptides/pharmacology , Peptides/chemistry , Structure-Activity Relationship
3.
Pharmacol Ther ; 245: 108416, 2023 05.
Article in English | MEDLINE | ID: mdl-37061202

ABSTRACT

Voltage-activated Na+ (NaV) channels are crucial contributors to rapid electrical signaling in the human body. As such, they are among the most targeted membrane proteins by clinical therapeutics and natural toxins. Several of the nine mammalian NaV channel subtypes play a documented role in pain or other sensory processes such as itch, touch, and smell. While causal relationships between these subtypes and biological function have been extensively described, the physiological role of NaV1.9 is less understood. Yet, mutations in NaV1.9 can cause striking disease phenotypes related to sensory perception such as loss or gain of pain and chronic itch. Here, we explore our current knowledge of the mechanisms by which NaV1.9 may contribute to pain and elaborate on the challenges associated with establishing links between experimental conditions and human disease. This review also discusses the lack of comprehensive insights into NaV1.9-specific pharmacology, an unfortunate situation since modulatory compounds may have tremendous potential in the clinic to treat pain or as precision tools to examine the extent of NaV1.9 participation in sensory perception processes.


Subject(s)
Pain , Toxins, Biological , Animals , Humans , Mammals , Mutation , Pain/drug therapy , Signal Transduction
4.
Nat Commun ; 13(1): 417, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35058427

ABSTRACT

Photoactivatable drugs targeting ligand-gated ion channels open up new opportunities for light-guided therapeutic interventions. Photoactivable toxins targeting ion channels have the potential to control excitable cell activities with low invasiveness and high spatiotemporal precision. As proof-of-concept, we develop HwTxIV-Nvoc, a UV light-cleavable and photoactivatable peptide that targets voltage-gated sodium (NaV) channels and validate its activity in vitro in HEK293 cells, ex vivo in brain slices and in vivo on mice neuromuscular junctions. We find that HwTxIV-Nvoc enables precise spatiotemporal control of neuronal NaV channel function under all conditions tested. By creating multiple photoactivatable toxins, we demonstrate the broad applicability of this toxin-photoactivation technology.


Subject(s)
Light , Peptides/toxicity , Toxins, Biological/toxicity , Voltage-Gated Sodium Channels/metabolism , Amino Acid Sequence , Animals , Brain/physiology , HEK293 Cells , Humans , Ion Channel Gating/radiation effects , Mice, Inbred C57BL , Neurons/physiology , Neurons/radiation effects , Peptides/chemical synthesis , Peptides/chemistry , Protein Engineering , Time Factors , Ultraviolet Rays , Zebrafish
5.
Br J Pharmacol ; 179(3): 473-486, 2022 02.
Article in English | MEDLINE | ID: mdl-34411279

ABSTRACT

BACKGROUND AND PURPOSE: Voltage-gated sodium (NaV ) channels are expressed de novo in carcinomas where their activity promotes invasiveness. Breast and colon cancer cells express the neonatal splice variant of NaV 1.5 (nNaV 1.5), which has several amino acid substitutions in the domain I voltage-sensor compared with its adult counterpart (aNaV 1.5). This study aimed to determine whether nNaV 1.5 channels could be distinguished pharmacologically from aNaV 1.5 channels. EXPERIMENTAL APPROACH: Cells expressing either nNaV 1.5 or aNaV 1.5 channels were exposed to low MW inhibitors, an antibody or natural toxins, and changes in electrophysiological parameters were measured. Stable expression in EBNA cells and transient expression in Xenopus laevis oocytes were used. Currents were recorded by whole-cell patch clamp and two-electrode voltage-clamp, respectively. KEY RESULTS: Several clinically used blockers of NaV channels (lidocaine, procaine, phenytoin, mexiletine, ranolazine, and riluzole) could not distinguish between nNaV 1.5 or aNaV 1.5 channels. However, two tarantula toxins (HaTx and ProTx-II) and a polyclonal antibody (NESOpAb) preferentially inhibited currents elicited by either nNaV 1.5 or aNaV 1.5 channels by binding to the spliced region of the channel. Furthermore, the amino acid residue at position 211 (aspartate in aNaV 1.5/lysine in nNaV 1.5), that is, the charge reversal in the spliced region of the channel, played a key role in the selectivity, especially in antibody binding. CONCLUSION AND IMPLICATIONS: We conclude that the cancer-related nNaV 1.5 channel can be distinguished pharmacologically from its nearest neighbour, aNaV 1.5 channels. Thus, it may be possible to design low MW compounds as antimetastatic drugs for non-toxic therapy of nNaV 1.5-expressing carcinomas.


Subject(s)
Carcinoma , Spider Venoms , Voltage-Gated Sodium Channels , Humans , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Spider Venoms/chemistry , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channels/metabolism
6.
Toxins (Basel) ; 13(8)2021 08 06.
Article in English | MEDLINE | ID: mdl-34437420

ABSTRACT

Bites from helodermatid lizards can cause pain, paresthesia, paralysis, and tachycardia, as well as other symptoms consistent with neurotoxicity. Furthermore, in vitro studies have shown that Heloderma horridum venom inhibits ion flux and blocks the electrical stimulation of skeletal muscles. Helodermatids have long been considered the only venomous lizards, but a large body of robust evidence has demonstrated venom to be a basal trait of Anguimorpha. This clade includes varanid lizards, whose bites have been reported to cause anticoagulation, pain, and occasionally paralysis and tachycardia. Despite the evolutionary novelty of these lizard venoms, their neuromuscular targets have yet to be identified, even for the iconic helodermatid lizards. Therefore, to fill this knowledge gap, the venoms of three Heloderma species (H. exasperatum, H. horridum and H. suspectum) and two Varanus species (V. salvadorii and V. varius) were investigated using Gallus gallus chick biventer cervicis nerve-muscle preparations and biolayer interferometry assays for binding to mammalian ion channels. Incubation with Heloderma venoms caused the reduction in nerve-mediated muscle twitches post initial response of avian skeletal muscle tissue preparation assays suggesting voltage-gated sodium (NaV) channel binding. Congruent with the flaccid paralysis inducing blockage of electrical stimulation in the skeletal muscle preparations, the biolayer interferometry tests with Heloderma suspectum venom revealed binding to the S3-S4 loop within voltage-sensing domain IV of the skeletal muscle channel subtype, NaV1.4. Consistent with tachycardia reported in clinical cases, the venom also bound to voltage-sensing domain IV of the cardiac smooth muscle calcium channel, CaV1.2. While Varanus varius venom did not have discernable effects in the avian tissue preparation assay at the concentration tested, in the biointerferometry assay both V. varius and V. salvadorii bound to voltage-sensing domain IV of both NaV1.4 and CaV1.2, similar to H. suspectum venom. The ability of varanid venoms to bind to mammalian ion channels but not to the avian tissue preparation suggests prey-selective actions, as did the differential potency within the Heloderma venoms for avian versus mammalian pathophysiological targets. This study thus presents the detailed characterization of Heloderma venom ion channel neurotoxicity and offers the first evidence of varanid lizard venom neurotoxicity. In addition, the data not only provide information useful to understanding the clinical effects produced by envenomations, but also reveal their utility as physiological probes, and underscore the potential utility of neglected venomous lineages in the drug design and development pipeline.


Subject(s)
Calcium Channels/metabolism , Lizards , Neurotoxins/toxicity , Sodium Channels/metabolism , Venoms/toxicity , Animals , Chickens , In Vitro Techniques , Male , Neuromuscular Junction/drug effects , Neuromuscular Junction/physiology , Protein Binding
7.
Epilepsia ; 62(6): e82-e87, 2021 06.
Article in English | MEDLINE | ID: mdl-33901312

ABSTRACT

We identified nine patients from four unrelated families harboring three biallelic variants in SCN1B (NM_001037.5: c.136C>T; p.[Arg46Cys], c.178C>T; p.[Arg60Cys], and c.472G>A; p.[Val158Met]). All subjects presented with early infantile epileptic encephalopathy 52 (EIEE52), a rare, severe developmental and epileptic encephalopathy featuring infantile onset refractory seizures followed by developmental stagnation or regression. Because SCN1B influences neuronal excitability through modulation of voltage-gated sodium (NaV ) channel function, we examined the effects of human SCN1BR46C (ß1R46C ), SCN1BR60C (ß1R60C ), and SCN1BV158M (ß1V158M ) on the three predominant brain NaV channel subtypes NaV 1.1 (SCN1A), NaV 1.2 (SCN2A), and NaV 1.6 (SCN8A). We observed a shift toward more depolarizing potentials of conductance-voltage relationships (NaV 1.2/ß1R46C , NaV 1.2/ß1R60C , NaV 1.6/ß1R46C , NaV 1.6/ß1R60C , and NaV 1.6/ß1V158M ) and channel availability (NaV 1.1/ß1R46C , NaV 1.1/ß1V158M , NaV 1.2/ß1R46C , NaV 1.2/ß1R60C , and NaV 1.6/ß1V158M ), and detected a slower recovery from fast inactivation for NaV 1.1/ß1V158M . Combined with modeling data indicating perturbation-induced structural changes in ß1, these results suggest that the SCN1B variants reported here can disrupt normal NaV channel function in the brain, which may contribute to EIEE52.


Subject(s)
Spasms, Infantile/genetics , Voltage-Gated Sodium Channel beta-1 Subunit/genetics , Voltage-Gated Sodium Channels/genetics , Voltage-Gated Sodium Channels/metabolism , Child , Child, Preschool , Chromosome Mapping , DNA/genetics , Drug Resistant Epilepsy/etiology , Electroencephalography , Exome , Female , Genetic Variation , Humans , Infant , Male , Models, Molecular , Mutation, Missense/genetics , Pedigree , Seizures/etiology
8.
Toxicol Lett ; 346: 16-22, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33878385

ABSTRACT

The reef stonefish (Synanceia verrucosa) is a venomous fish which causes excruciatingly painful envenomations. While some research on the pathophysiology and functions of the venom have been conducted, there are still some gaps in the understanding of the venom effects due to the extreme lability of fish venom toxins and the lack of available testing platforms. Here we set out to assess new functions of the venom whilst also attempting to address some unclear pathophysiological effects from previous literature. Utilising a biolayer interferometry assay, our results highlight that the venom binds to the orthosteric site of the α-1 nicotinic acetylcholine receptor as well as the domain IV of voltage-gated Ca2+ (CaV1.2) channel mimotopes. Both these results add some clarity to the previously ambiguous literature. We further assessed the coagulotoxic effects of the venom using thromboelastography and Stago STA-R Max coagulation analyser assays. We reveal that the venom produced anticoagulant activity and significantly delayed time until clot formation of recalcified human plasma which is likely through the degradation of phospholipids. There was a difference between fresh and lyophilised venom activity toward the nicotinic acetylcholine receptor mimotopes and coagulation assays, whilst no difference was observed in the activity toward the domain IV of CaV1.2 mimotopes. This research adds further insights into the neglected area of fish venom whilst also highlighting the extreme labile nature of fish venom toxins.


Subject(s)
Fish Venoms/toxicity , Fishes/physiology , Receptors, Nicotinic/chemistry , Animals , Binding Sites , Blood Coagulation/drug effects , Humans , Plasma/chemistry , Protein Domains , Thrombelastography
9.
Proc Natl Acad Sci U S A ; 117(40): 24920-24928, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32958636

ABSTRACT

Australian funnel-web spiders are infamous for causing human fatalities, which are induced by venom peptides known as δ-hexatoxins (δ-HXTXs). Humans and other primates did not feature in the prey or predator spectrum during evolution of these spiders, and consequently the primate lethality of δ-HXTXs remains enigmatic. Funnel-web envenomations are mostly inflicted by male spiders that wander from their burrow in search of females during the mating season, which suggests a role for δ-HXTXs in self-defense since male spiders rarely feed during this period. Although 35 species of Australian funnel-web spiders have been described, only nine δ-HXTXs from four species have been characterized, resulting in a lack of understanding of the ecological roles and molecular evolution of δ-HXTXs. Here, by profiling venom-gland transcriptomes of 10 funnel-web species, we report 22 δ-HXTXs. Phylogenetic and evolutionary assessments reveal a remarkable sequence conservation of δ-HXTXs despite their deep evolutionary origin within funnel-web spiders, consistent with a defensive role. We demonstrate that δ-HXTX-Ar1a, the lethal toxin from the Sydney funnel-web spider Atrax robustus, induces pain in mice by inhibiting inactivation of voltage-gated sodium (NaV) channels involved in nociceptive signaling. δ-HXTX-Ar1a also inhibited inactivation of cockroach NaV channels and was insecticidal to sheep blowflies. Considering their algogenic effects in mice, potent insecticidal effects, and high levels of sequence conservation, we propose that the δ-HXTXs were repurposed from an initial insecticidal predatory function to a role in defending against nonhuman vertebrate predators by male spiders, with their lethal effects on humans being an unfortunate evolutionary coincidence.


Subject(s)
Evolution, Molecular , Neurotoxins/genetics , Polyamines/chemistry , Spiders/genetics , Amino Acid Sequence/genetics , Animals , Australia , Conserved Sequence/genetics , Female , Humans , Male , Mice , Neurotoxins/chemistry , Neurotoxins/metabolism , Peptides/genetics , Phylogeny , Polyamines/metabolism , Sexual Behavior, Animal/physiology , Spider Venoms/genetics , Spiders/pathogenicity , Transcriptome/genetics , Vertebrates/genetics , Vertebrates/physiology
10.
Biochem Pharmacol ; 181: 114080, 2020 11.
Article in English | MEDLINE | ID: mdl-32511987

ABSTRACT

Management of chronic pain presents a major challenge, since many currently available treatments lack efficacy and have problems such as addiction and tolerance. Loss of function mutations in the SCN9A gene lead to a congenital inability to feel pain, with no other sensory deficits aside from anosmia. SCN9A encodes the voltage-gated sodium (NaV) channel 1.7 (NaV1.7), which has been identified as a primary pain target. However, in developing NaV1.7-targeted analgesics, extreme care must to be taken to avoid off-target activity on other NaV subtypes that are critical for survival. Since spider venoms are an excellent source of NaV channel modulators, we screened a panel of spider venoms to identify selective NaV1.7 inhibitors. This led to identification of two novel NaV modulating venom peptides (ß/µ-theraphotoxin-Pe1a and ß/µ-theraphotoxin-Pe1b (Pe1b) from the arboreal tarantula Phormingochilus everetti. A third peptide isolated from the tarantula Bumba pulcherrimaklaasi was identical to the well-known ProTx-I (ß/ω-theraphotoxin-Tp1a) from the tarantula Thrixopelma pruriens. A tethered toxin (t-toxin)-based alanine scanning strategy was used to determine the NaV1.7 pharmacophore of ProTx-I. We designed several ProTx-I and Pe1b analogues, and tested them for activity and NaV channel subtype selectivity. Several analogues had improved potency against NaV1.7, and altered specificity against other NaV channels. These analogues provide a foundation for development of Pe1b as a lead molecule for therapeutic inhibition of NaV1.7.


Subject(s)
Analgesics/pharmacology , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Peptides/pharmacology , Sodium Channel Blockers/pharmacology , Amino Acid Sequence , Amino Acids/chemistry , Amino Acids/genetics , Analgesics/chemistry , Analgesics/isolation & purification , Animals , DNA Mutational Analysis/methods , Female , Humans , Ion Channel Gating/drug effects , Ion Channel Gating/genetics , Ion Channel Gating/physiology , Mutation , NAV1.7 Voltage-Gated Sodium Channel/genetics , Oocytes/drug effects , Oocytes/metabolism , Oocytes/physiology , Peptides/chemistry , Peptides/genetics , Protein Conformation , Sequence Homology, Amino Acid , Sodium Channel Blockers/chemistry , Sodium Channel Blockers/isolation & purification , Spider Venoms/chemistry , Spider Venoms/metabolism , Xenopus laevis
11.
Bioelectricity ; 2(3): 269-278, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-34476357

ABSTRACT

Background: Voltage-gated sodium (NaV) channels help regulate electrical activity of the plasma membrane. Mutations in associated subunits can result in pathological outcomes. Here we examined the interaction of NaV channels with cardiac arrhythmia-linked mutations in SCN2B and SCN4B, two genes that encode auxiliary ß-subunits. Materials and Methods: To investigate changes in SCN2B R137H and SCN4B I80T function, we combined three-dimensional X-ray crystallography with electrophysiological measurements on NaV1.5, the dominant subtype in the heart. Results: SCN4B I80T alters channel activity, whereas SCN2B R137H does not have an apparent effect. Structurally, the SCN4B I80T perturbation alters hydrophobic packing of the subunit with major structural changes and causes a thermal destabilization of the folding. In contrast, SCN2B R137H leads to structural changes but overall protein stability is unaffected. Conclusion: SCN4B I80T data suggest a functionally important region in the interaction between NaV1.5 and ß4 that, when disrupted, could lead to channel dysfunction. A lack of apparent functional effects of SCN2B R137H on NaV1.5 suggests an alternative working mechanism, possibly through other NaV channel subtypes present in heart tissue. Indeed, mapping the structural variations of SCN2B R137H onto neuronal NaV channel structures suggests altered interaction patterns.

12.
Toxins (Basel) ; 11(6)2019 06 21.
Article in English | MEDLINE | ID: mdl-31234412

ABSTRACT

Phlotoxin-1 (PhlTx1) is a peptide previously identified in tarantula venom (Phlogius species) that belongs to the inhibitory cysteine-knot (ICK) toxin family. Like many ICK-based spider toxins, the synthesis of PhlTx1 appears particularly challenging, mostly for obtaining appropriate folding and concomitant suitable disulfide bridge formation. Herein, we describe a procedure for the chemical synthesis and the directed sequential disulfide bridge formation of PhlTx1 that allows for a straightforward production of this challenging peptide. We also performed extensive functional testing of PhlTx1 on 31 ion channel types and identified the voltage-gated sodium (Nav) channel Nav1.7 as the main target of this toxin. Moreover, we compared PhlTx1 activity to 10 other spider toxin activities on an automated patch-clamp system with Chinese Hamster Ovary (CHO) cells expressing human Nav1.7. Performing these analyses in reproducible conditions allowed for classification according to the potency of the best natural Nav1.7 peptide blockers. Finally, subsequent in vivo testing revealed that intrathecal injection of PhlTx1 reduces the response of mice to formalin in both the acute pain and inflammation phase without signs of neurotoxicity. PhlTx1 is thus an interesting toxin to investigate Nav1.7 involvement in cellular excitability and pain.


Subject(s)
Analgesics/isolation & purification , Peptides/isolation & purification , Spider Venoms/chemistry , Voltage-Gated Sodium Channel Blockers/isolation & purification , Amino Acid Sequence , Analgesics/chemistry , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , CHO Cells , Cricetulus , Female , Formaldehyde , Mice, Inbred C57BL , NAV1.7 Voltage-Gated Sodium Channel/physiology , Oocytes , Pain/chemically induced , Pain/drug therapy , Peptides/chemistry , Peptides/pharmacology , Peptides/therapeutic use , Protein Folding , Spiders , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channel Blockers/therapeutic use , Xenopus laevis
13.
Science ; 363(6433)2019 03 22.
Article in English | MEDLINE | ID: mdl-30733386

ABSTRACT

Fast inactivation of voltage-gated sodium (Nav) channels is essential for electrical signaling, but its mechanism remains poorly understood. Here we determined the structures of a eukaryotic Nav channel alone and in complex with a lethal α-scorpion toxin, AaH2, by electron microscopy, both at 3.5-angstrom resolution. AaH2 wedges into voltage-sensing domain IV (VSD4) to impede fast activation by trapping a deactivated state in which gating charge interactions bridge to the acidic intracellular carboxyl-terminal domain. In the absence of AaH2, the S4 helix of VSD4 undergoes a ~13-angstrom translation to unlatch the intracellular fast-inactivation gating machinery. Highlighting the polypharmacology of α-scorpion toxins, AaH2 also targets an unanticipated receptor site on VSD1 and a pore glycan adjacent to VSD4. Overall, this work provides key insights into fast inactivation, electromechanical coupling, and pathogenic mutations in Nav channels.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel/chemistry , Scorpion Venoms/chemistry , Scorpion Venoms/pharmacology , Sodium Channel Blockers/chemistry , Sodium Channel Blockers/pharmacology , Animals , Cockroaches , Cryoelectron Microscopy , Humans , Models, Molecular , Protein Domains , Recombinant Fusion Proteins/chemistry
14.
J Clin Invest ; 128(12): 5434-5447, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30395542

ABSTRACT

Itch (pruritis) and pain represent two distinct sensory modalities; yet both have evolved to alert us to potentially harmful external stimuli. Compared with pain, our understanding of itch is still nascent. Here, we report a new clinical case of debilitating itch and altered pain perception resulting from the heterozygous de novo p.L811P gain-of-function mutation in NaV1.9, a voltage-gated sodium (NaV) channel subtype that relays sensory information from the periphery to the spine. To investigate the role of NaV1.9 in itch, we developed a mouse line in which the channel is N-terminally tagged with a fluorescent protein, thereby enabling the reliable identification and biophysical characterization of NaV1.9-expressing neurons. We also assessed NaV1.9 involvement in itch by using a newly created NaV1.9-/- and NaV1.9L799P/WT mouse model. We found that NaV1.9 is expressed in a subset of nonmyelinated, nonpeptidergic small-diameter dorsal root ganglia (DRGs). In WT DRGs, but not those of NaV1.9-/- mice, pruritogens altered action potential parameters and NaV channel gating properties. Additionally, NaV1.9-/- mice exhibited a strong reduction in acute scratching behavior in response to pruritogens, whereas NaV1.9L799P/WT mice displayed increased spontaneous scratching. Altogether, our data suggest an important contribution of NaV1.9 to itch signaling.


Subject(s)
Ganglia, Spinal , Mutation , NAV1.9 Voltage-Gated Sodium Channel , Neurons , Pruritus , Signal Transduction , Animals , Disease Models, Animal , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Humans , Male , Mice , Mice, Knockout , NAV1.9 Voltage-Gated Sodium Channel/genetics , NAV1.9 Voltage-Gated Sodium Channel/metabolism , Neurons/metabolism , Neurons/pathology , Pruritus/genetics , Pruritus/metabolism , Pruritus/pathology
16.
JCI Insight ; 3(11)2018 06 07.
Article in English | MEDLINE | ID: mdl-29875317

ABSTRACT

Functional bowel disorder patients can suffer from chronic abdominal pain, likely due to visceral hypersensitivity to mechanical stimuli. As there is only a limited understanding of the basis of chronic visceral hypersensitivity (CVH), drug-based management strategies are ill defined, vary considerably, and include NSAIDs, opioids, and even anticonvulsants. We previously reported that the 1.1 subtype of the voltage-gated sodium (NaV; NaV1.1) channel family regulates the excitability of sensory nerve fibers that transmit a mechanical pain message to the spinal cord. Herein, we investigated whether this channel subtype also underlies the abdominal pain that occurs with CVH. We demonstrate that NaV1.1 is functionally upregulated under CVH conditions and that inhibiting channel function reduces mechanical pain in 3 mechanistically distinct mouse models of chronic pain. In particular, we use a small molecule to show that selective NaV1.1 inhibition (a) decreases sodium currents in colon-innervating dorsal root ganglion neurons, (b) reduces colonic nociceptor mechanical responses, and (c) normalizes the enhanced visceromotor response to distension observed in 2 mouse models of irritable bowel syndrome. These results provide support for a relationship between NaV1.1 and chronic abdominal pain associated with functional bowel disorders.


Subject(s)
Chronic Pain/drug therapy , Colon/drug effects , Irritable Bowel Syndrome/complications , Visceral Pain/drug therapy , Voltage-Gated Sodium Channel Blockers/administration & dosage , Animals , Chronic Pain/diagnosis , Chronic Pain/etiology , Chronic Pain/pathology , Colon/innervation , Colon/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Stability , Ganglia, Spinal/cytology , Humans , Irritable Bowel Syndrome/chemically induced , Irritable Bowel Syndrome/pathology , Male , Maximum Tolerated Dose , Mice , NAV1.1 Voltage-Gated Sodium Channel/metabolism , Nociceptors/drug effects , Nociceptors/metabolism , Pain Measurement , Trinitrobenzenesulfonic Acid/administration & dosage , Trinitrobenzenesulfonic Acid/toxicity , Visceral Pain/diagnosis , Visceral Pain/etiology , Visceral Pain/pathology
17.
Proc Natl Acad Sci U S A ; 115(17): 4495-4500, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29636418

ABSTRACT

Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel NaV1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these toxins could function as blockers of the pathogenic gating pore currents. We report that a crab spider toxin Hm-3 from Heriaeus melloteei can inhibit gating pore currents due to mutations affecting the second arginine residue in the S4 helix of VSD-I that we have found in patients with HypoPP and describe here. NMR studies show that Hm-3 partitions into micelles through a hydrophobic cluster formed by aromatic residues and reveal complex formation with VSD-I through electrostatic and hydrophobic interactions with the S3b helix and the S3-S4 extracellular loop. Our data identify VSD-I as a specific binding site for neurotoxins on sodium channels. Gating modifier toxins may constitute useful hits for the treatment of HypoPP.


Subject(s)
Mutation, Missense , NAV1.4 Voltage-Gated Sodium Channel/metabolism , Neurotoxins/toxicity , Paralysis, Hyperkalemic Periodic/metabolism , Protein Structure, Secondary , Spider Venoms/toxicity , Amino Acid Substitution , Animals , Female , HEK293 Cells , Humans , Ion Channel Gating , NAV1.4 Voltage-Gated Sodium Channel/chemistry , NAV1.4 Voltage-Gated Sodium Channel/genetics , Paralysis, Hyperkalemic Periodic/genetics , Paralysis, Hyperkalemic Periodic/pathology , Xenopus laevis
18.
J Physiol ; 596(10): 1863-1872, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29193176

ABSTRACT

Voltage-gated sodium (NaV ) channel gating is a complex phenomenon which involves a distinct contribution of four integral voltage-sensing domains (VSDI, VSDII, VSDIII and VSDIV). Utilizing accrued pharmacological and structural insights, we build on an established chimera approach to introduce animal toxin sensitivity in each VSD of an acceptor channel by transferring in portable S3b-S4 motifs from the four VSDs of a toxin-susceptible donor channel (NaV 1.2). By doing so, we observe that in NaV 1.8, a relatively unexplored channel subtype with distinctly slow gating kinetics, VSDI-III participate in channel opening whereas VSDIV can regulate opening as well as fast inactivation. These results illustrate the effectiveness of a pharmacological approach to investigate the mechanism underlying gating of a mammalian NaV channel complex.


Subject(s)
NAV1.8 Voltage-Gated Sodium Channel/physiology , Toxins, Biological/pharmacology , Animals , Humans , Ion Channel Gating , Membrane Potentials , NAV1.8 Voltage-Gated Sodium Channel/drug effects , Voltage-Gated Sodium Channel Blockers/pharmacology
19.
Proc Natl Acad Sci U S A ; 114(26): 6836-6841, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28607094

ABSTRACT

The Nav1.1 voltage-gated sodium channel is a critical contributor to excitability in the brain, where pathological loss of function leads to such disorders as epilepsy, Alzheimer's disease, and autism. This voltage-gated sodium (Nav) channel subtype also plays an important role in mechanical pain signaling by primary afferent somatosensory neurons. Therefore, pharmacologic modulation of Nav1.1 represents a potential strategy for treating excitability disorders of the brain and periphery. Inactivation is a complex aspect of Nav channel gating and consists of fast and slow components, each of which may involve a contribution from one or more voltage-sensing domains. Here, we exploit the Hm1a spider toxin, a Nav1.1-selective modulator, to better understand the relationship between these temporally distinct modes of inactivation and ask whether they can be distinguished pharmacologically. We show that Hm1a inhibits the gating movement of the domain IV voltage sensor (VSDIV), hindering both fast and slow inactivation and leading to an increase in Nav1.1 availability during high-frequency stimulation. In contrast, ICA-121431, a small-molecule Nav1.1 inhibitor, accelerates a subsequent VSDIV gating transition to accelerate entry into the slow inactivated state, resulting in use-dependent block. Further evidence for functional coupling between fast and slow inactivation is provided by a Nav1.1 mutant in which fast inactivation removal has complex effects on slow inactivation. Taken together, our data substantiate the key role of VSDIV in Nav channel fast and slow inactivation and demonstrate that these gating processes are sequential and coupled through VSDIV. These findings provide insight into a pharmacophore on VSDIV through which modulation of inactivation gating can inhibit or facilitate Nav1.1 function.


Subject(s)
Acetamides/pharmacology , Ion Channel Gating/drug effects , Mutation , NAV1.1 Voltage-Gated Sodium Channel/metabolism , Spider Venoms/pharmacology , Spiders/chemistry , Thiazoles/pharmacology , Animals , Humans , Ion Channel Gating/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Protein Domains , Spider Venoms/chemistry , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...