Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Physiol Biochem ; 201: 107869, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37421847

ABSTRACT

Studies on the role of nickel (Ni) in photosynthetic and antioxidant metabolism, as well as in flavonoid synthesis and biological fixation nitrogen in cowpea crop are scarce. The aim of this study was to elucidate the role of Ni in metabolism, photosynthesis and nodulation of cowpea plants. A completely randomized experiment was performed in greenhouse, with cowpea plants cultivated under 0, 0.5, 1, 2, or 3 mg kg-1 Ni, as Ni sulfate. In the study the following parameters were evaluated: activity of urease, nitrate reductase, superoxide dismutase, catalase and ascorbate peroxidase; concentration of urea, n-compounds, photosynthetic pigments, flavonoids, H2O2 and MDA; estimative of gas exchange, and biomass as plants, yield and weight of 100 seeds. At whole-plant level, Ni affected root biomass, number of seeds per pot, and yield, increasing it at 0.5 mg kg-1 and leading to inhibition at 2-3 mg kg-1 (e.g. number of seeds per pot and nodulation). The whole-plant level enhancement by 0.5 mg Ni kg-1 occurred along with increased photosynthetic pigments, photosynthesis, ureides, and catalase, and decreased hydrogen peroxide concentration. This study presents fundamental new insights regarding Ni effect on N metabolism, and nodulation that can be helpful to increase cowpea yield. Considering the increasing population and its demand for staple food, these results contribute to the enhancement of agricultural techniques that increase crop productivity and help to maintain human food security.


Subject(s)
Vigna , Humans , Catalase/metabolism , Vigna/metabolism , Nitrogen Fixation , Nickel/pharmacology , Nickel/metabolism , Hydrogen Peroxide/metabolism
2.
Heliyon ; 9(6): e17012, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37484364

ABSTRACT

Despite the positive results of using elicitors to induce resistance against plant diseases, some factors have inhibited the popularization of their use in agriculture. There is an energetic cost related to the elicitors' induced response which can cause undesired effects on growth under low-pressure disease conditions. Elicitors can create phytotoxicity and show high variation in their efficiency between different genotypes within the same crop; in addition, the positive results related to the induced resistance may not repeat in field treatments, adding to the possibility that they are not economically viable. Thus, we carried out two experiments to investigate the technical and economic efficiency of acibenzolar-S-methyl (ASM) and its association with fungicides in the control of leaf diseases of susceptible and resistant wheat varieties, and as how it reflects on the photosynthetic and production performance of wheat. This study showed the limitations of incorporating ASM into foliar fungal disease control in economic terms. However, it was evident that ASM effectively induced plant resistance against Leaf Rust and Powdery Mildew in the field and can be considered a sustainable option for wheat cultivation. Even though its association with chemical control was not the best economic strategy the use of ASM is a tool that can be incorporated into wheat cultivation to minimize the emergence of fungicide-resistant pathogens due to the diversification of modes of action employed and reduce the toxic residue deposition to the environment and human health.

3.
Plant Physiol Biochem ; 166: 512-521, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34171572

ABSTRACT

Legume plants from Fabaceae family (phylogenetic group composed by three subfamilies: Caesalpinioideae, Mimosoideae, and Papilionoideae) can fix atmospheric nitrogen (N2) into ammonia (NH3) by the symbiotic relationship with rhizobia bacteria. These bacteria respond chemotactically to certain compounds released by plants such as sugars, amino acids and organic acids. Root secretion of isoflavonoids acts as inducers for nod genes in rhizobia and ABC transporters and ICHG (isoflavone conjugates hydrolyzing beta-glucosidase) at apoplast are related to the exudation of genistein and daidzein in soybean roots. Biological nitrogen fixation (BNF) occurs inside the nodule by the action of nitrogenase enzyme, which fixes N2 into NH3, which is converted into ureides (allantoin and allantoic acid). In this review, we bring together the latest findings on flavonoids biosynthesis and ureide metabolism in several legume plant species. We emphasize how flavonoids induce nod genes in rhizobia, affecting chemotaxis, nodulation, ureide production, growth and yield of legume plants. Mainly, isoflavonoids daidzein and genistein are responsible for nod genes activation in the rhizobia bacteria. Flavonoids also play an important role during nodule organogenesis by acting as auxin transporter inhibitors in root cells, especially in indeterminate nodules. The ureides are the main N transport form in tropical legumes and they are catabolized in leaves and other sink tissues to produce amino acids and proteins needed for plant growth and yield.


Subject(s)
Fabaceae , Rhizobium , Flavonoids , Nitrogen Fixation , Phylogeny , Plant Root Nodulation , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL