Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
J Periodontal Res ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764144

ABSTRACT

AIMS: To histologically compare osseointegration and crestal bone healing between newly introduced tapered, self-cutting bone-level test implants and tapered bone-level control implants in sites with fully healed sites. METHODS: Sixty-six implants (33 test, 33 control) were placed 1 mm subcrestally in a minipig model and underwent qualitative histologic and quantitative histometric analyses after 3, 6 and 12 weeks of submerged healing. The primary and secondary outcomes were the bone-to-implant contact (BIC) and first bone-to-implant contact (fBIC). Outcomes between the test and control implants were statistically compared. RESULTS: The BIC values of the test implants were comparable and non-inferior over the time points studied, except for the 12 weeks time point which showed statistically significantly higher BIC values of the test (88.07 ± 5.35%) compared to the control implants (80.88 ± 7.51%) (p = .010). Similarly comparable and non-inferior were the fBIC values, except for the 6-week outcome, which showed statistically higher values for the test (-546.5 ± 450.80 µm) compared to the control implants (-75.7 ± 100.59 µm). fBIC results for the test implants were qualitatively more stable and consistent between test time points. CONCLUSION: Novel self-cutting bone-level test implants demonstrated superior osseointegration and similar bone levels compared to conventional bone-level implants after a healing period of 12 weeks in healed ridges.

2.
Int J Oral Sci ; 15(1): 57, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38072943

ABSTRACT

The present study aimed to assess the molecular profiles of subepithelial connective tissue grafts (CTGs) obtained at different locations and depths in the human palate. Sixty-four CTGs belonging to anterior deep (AD), anterior superficial (AS), posterior deep (PD), and posterior superficial (PS) groups were subjected to RNA-Sequencing and their transcriptomes were analyzed computationally. Functional correlations characterizing the CTG groups were validated by cell biological experiments using primary human palatal fibroblasts (HPFs) extracted from the CTGs. A clearly more pronounced location-dependent than depth-dependent difference between the grafts, with a minimal number of genes (4) showing no dependence on the location, was revealed. Epithelial, endothelial, and monocytic cell migration was strongly (P < 0.001) potentiated by AD- and PS-HPFs. Moreover, significantly increased expression of genes encoding C-C and C-X-C motif chemokine ligands as well as significantly (P < 0.01) activated p38 signaling suggested immunomodulatory phenotype for AD- and PS-HPFs. Increased growth factor gene expression and significantly activated (P < 0.001) Erk and Akt signaling in HPFs originating from A-CTGs implied their involvement in cell survival, proliferation, and motility. Prominent collagen-rich expression profile contributing to high mechanical stability, increased osteogenesis-related gene expression, and strongly activated (P < 0.001) Smad1/5/8 signaling characterized HPFs originating from P-CTGs. The present data indicate that in humans, differences between palatal CTGs harvested from different locations and depths appear to be location- rather than depth-dependent. Our findings provide the basis for future personalization of the therapeutic strategy by selecting an optimal graft type depending on the clinical indications.


Subject(s)
Connective Tissue , Palate , Humans , Connective Tissue/transplantation , Collagen , Fibroblasts , Signal Transduction
3.
Clin Oral Implants Res ; 34(12): 1395-1405, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37776512

ABSTRACT

AIM: To investigate the healing after heterotopic mucosa transpositioning at dental implants and teeth. MATERIALS AND METHODS: One hemimandible per dog (n = 4) was allocated to receive 3 implants (test), whereby 3 premolars on the contralateral side served as controls. After osseointegration, a Z-plasty was performed on the buccal aspect of the test and control sites to heterotopically move the zone of keratinized tissue (KT) into a region with non-keratinized tissue (nKT) and vice versa. Clinical measurements were performed before (T0) and at 12 weeks following heterotopic transposition (T1). Thereafter, specimens were processed for histological analysis. RESULTS: Clinical measurements revealed that at T1, a band of KT was reestablished at teeth (mean: 2.944 ± 1.866 mm), whereas at implants, the transpositioned nKT resulted in a mucosa without any signs of keratinization (mean: 0 mm; p < .0001). At implant sites, the probing attachment level loss was more pronounced compared to tooth sites (-1.667 ± 1.195 mm and -1.028 ± 0.878 mm, respectively; p = .0076). Histologically, the transpositioned nKT, was accompanied by the formation of KT at the tooth but not at implant sites. The supracrestal soft tissues were statistically significantly higher at tooth compared to implant sites (2.978 ± 0.483 mm and 2.497 ± 0.455 mm, p = .0083). The transpositioned KT remained mostly unaltered in its morphological characteristics. CONCLUSIONS: The findings of this study indicate that: (a) transpositioned KT may retain its morphological characteristics; and (b) transpositioned nKM was accompanied by the formation of KT at the tooth but not at implant sites.


Subject(s)
Dental Implants , Animals , Dogs , Gingiva/anatomy & histology , Mucous Membrane , Osseointegration , Bicuspid/surgery , Dental Implantation, Endosseous/methods
4.
Periodontol 2000 ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37658591

ABSTRACT

The recognition and importance of immune cells during bone regeneration, including around bone biomaterials, has led to the development of an entire field termed "osteoimmunology," which focuses on the connection and interplay between the skeletal system and immune cells. Most studies have focused on the "osteogenic" capacity of various types of bone biomaterials, and much less focus has been placed on immune cells despite being the first cell type in contact with implantable devices. Thus, the amount of literature generated to date on this topic makes it challenging to extract needed information. This review article serves as a guide highlighting advancements made in the field of osteoimmunology emphasizing the role of the osteoimmunomodulatory properties of biomaterials and their impact on osteoinduction. First, the various immune cell types involved in bone biomaterial integration are discussed, including the prominent role of osteal macrophages (OsteoMacs) during bone regeneration. Thereafter, key biomaterial properties, including topography, wettability, surface charge, and adsorption of cytokines, growth factors, ions, and other bioactive molecules, are discussed in terms of their impact on immune responses. These findings highlight and recognize the importance of the immune system and osteoimmunology, leading to a shift in the traditional models used to understand and evaluate biomaterials for bone regeneration.

5.
Clin Oral Investig ; 27(9): 5041-5048, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37421492

ABSTRACT

OBJECTIVES: To histologically evaluate the effects of a novel human recombinant amelogenin (rAmelX) on periodontal wound healing / regeneration in recession-type defects. MATERIALS AND METHODS: A total of 17 gingival recession-type defects were surgically created in the maxilla of three minipigs. The defects were randomly treated with a coronally advanced flap (CAF) and either rAmelX (test), or a CAF and placebo (control). At three months following reconstructive surgery, the animals were euthanized, and the healing outcomes histologically evaluated. RESULTS: The test group yielded statistically significantly (p = 0.047) greater formation of cementum with inserting collagen fibers compared with the control group (i.e., 4.38 mm ± 0.36 mm vs. 3.48 mm ± 1.13 mm). Bone formation measured 2.15 mm ± 0.8 mm in the test group and 2.24 mm ± 1.23 mm in the control group, respectively, without a statistically significant difference (p = 0.94). CONCLUSIONS: The present data have provided for the first-time evidence for the potential of rAmelX to promote regeneration of periodontal ligament and root cementum in recession-type defects, thus warranting further preclinical and clinical testing. CLINICAL RELEVANCE: The present results set the basis for the potential clinical application of rAmelX in reconstructive periodontal surgery.


Subject(s)
Gingival Recession , Humans , Animals , Swine , Amelogenin/pharmacology , Swine, Miniature , Gingival Recession/drug therapy , Gingival Recession/surgery , Wound Healing , Dental Cementum , Treatment Outcome , Tooth Root/pathology , Connective Tissue
6.
Clin Oral Investig ; 27(8): 4553-4566, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37300738

ABSTRACT

OBJECTIVES: This study aimed to histologically evaluate the healing at 8 weeks after coronally advanced flap (CAF) with either a superficial (SCTG) or deep palatal connective tissue graft (DCTG), or a collagen matrix (CM) to cover recession defects at teeth and implants. MATERIAL AND METHODS: One mandibular side of 6 miniature pigs received each 3 titanium implants 12 weeks after extraction. Eight weeks later, recession defects were created around implants and contralateral premolars and 4 weeks later randomly subjected to CAF + SCTG, CAF + DCTG, or CAF + CM. After 8 weeks, block biopsies were histologically analyzed. RESULTS: For the primary outcome, i.e., keratinization of the epithelium, all teeth and implants exhibited a keratinized epithelium with no histological differences among them also not in terms of statistically significant differences in length (SCTG 0.86 ± 0.92 mm, DCTG 1.13 ± 0.62 mm, and Cm, 1.44 ± 0.76 mm). Pocket formation was histologically seen at all teeth, around most implants with SCTG and DCTG, however not in the CM implant group. The connective tissue grafts showed hardly signs of degradation, whereas the CM was partly degraded and integrated in connective tissue. The mean gain in gingival height was similar in all experimental groups (SCTG 3.89 ± 0.80 mm, DCTG 4.01 ± 1.40 mm, CM 4.21 ± 0.64 mm). Statistically significant differences were found in the height of the junctional epithelium between the control teeth and the connective tissue groups (p = 0.009 and 0.044). CONCLUSIONS: In this animal model, the use of either a superficial or deep connective tissue graft or a collagen membrane did not seem to have any impact on the epithelial keratinization around both teeth and implants. All procedures (CAF + SCTG/DCTG/CM) resulted in a long JE that was even longer at implants. CLINICAL RELEVANCE: Deep/superficial palatal connective tissue graft yielded similar keratinization around teeth/implants. Given the absence of pocket formation and inflammatory processes at implants when using a CM, CAF + CM might bear potential clinical benefits.


Subject(s)
Gingival Recession , Animals , Swine , Swine, Miniature , Gingival Recession/surgery , Collagen , Connective Tissue/transplantation , Gingiva/transplantation , Treatment Outcome , Tooth Root/pathology
7.
J Clin Periodontol ; 50(8): 1064-1074, 2023 08.
Article in English | MEDLINE | ID: mdl-37186090

ABSTRACT

AIM: To investigate the spontaneous regeneration of the implanto-mucosal and dento-gingival unit after complete removal of keratinized tissue (KT). MATERIALS AND METHODS: One hemi-mandible per dog (n = 4) was allocated to receive three dental implants (test sites, premolar region), whereas three premolars on the contralateral side were controls. After osseointegration, the entire KT (buccal + lingual) was surgically excised on all test and control sites, leaving the bone exposed. Clinical measurements were performed before excision (T0 ) and after 12 weeks (T1 ). Following healing, the animals were euthanized, and the specimens were histologically processed. Descriptive statistical analyses were performed. RESULTS: Clinical measurements revealed that at T1 , on all teeth, a band of KT was spontaneously regenerated (mean width: 2.60 ± 0.66 mm), whereas on implants, KT was detected only occasionally at mesial or distal but not at buccal sites (mean total: 0.35 ± 0.53 mm; p < .0001). Histologically, spontaneous regeneration of the dento-gingival unit was evident, displaying masticatory mucosa. At the implant sites, on the other hand, the implanto-mucosal unit was characterized by a non-keratinized epithelium and elastic fibres, indicating the characteristics encountered in alveolar mucosa. CONCLUSION: After excision of KT at implant sites, the spontaneous regeneration of the soft tissue is characterized by a non-keratinized epithelium typical for alveolar mucosa, while at tooth sites the spontaneous regeneration was characterized by soft tissue resembling gingiva.


Subject(s)
Dental Implants , Gingiva , Animals , Dogs , Gingiva/surgery , Osseointegration , Wound Healing
8.
Clin Oral Implants Res ; 34(6): 627-638, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37084177

ABSTRACT

OBJECTIVES: To evaluate the sequential osseointegration of a novel titanium implant system based on a 3D printing technology in comparison with conventional titanium implants. MATERIAL AND METHODS: Two novel titanium implants based on 3D printing were tested in the mandible of eight Beagle dogs. As a control, two different commercially available titanium implants were used. The implants were staged to accommodate healing periods of 2 and 6 weeks. The primary outcome variable was bone-to-implant contact (BIC) in non-decalcified tissue sections and micro-CT analysis. RESULTS: Histomorphometrically, the proportions of tissues adjacent to the implant surfaces were similar for all implants, whereas the BIC percentage of new mineralized bone was greater for the control implants after both 2 and 6 weeks (p < .05). Micro-CT analysis revealed increasing osseous volume and BIC from 2 to 6 weeks. In contrast to the histomorphometry, the BIC evaluation with the micro-CT data revealed a significantly higher BIC for the two test implants compared with controls (p < .001). The analysis of the total implant surface area disclosed a value that was approximately double as high for the test compared to the control implants. CONCLUSIONS: The novel titanium implant system based on 3D printing yielded values for osseointegration that were adequate and satisfactory. The higher percentage of new mineralized bone in the control implants is explained by the fact of a completely different three-dimensional surface area.


Subject(s)
Dental Implants , Osseointegration , Dogs , Animals , Titanium , Mandible/surgery , Printing, Three-Dimensional , Surface Properties
9.
Clin Oral Investig ; 26(4): 3735-3746, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35244779

ABSTRACT

OBJECTIVE: To evaluate re-osseointegration after electrolytic cleaning and regenerative therapy of dental implants with peri-implantitis in humans. MATERIAL AND METHODS: Four dental implants that developed peri-implantitis underwent electrolytic cleaning followed by regenerative therapy with guided bone regeneration. All four implants developed recurrent peri-implantitis and were therefore explanted 6 to 13 months later. Radiographic bone level, probing depth, and bleeding on probing were determined at the time of surgery, 6 months later, and before implant retrieval. The peri-implant tissues were histologically and histomorphometrically analyzed. RESULTS: All four implants demonstrated radiographic and histological bone gain, reduced probing depth, and bleeding on probing. Radiographic bone gain was 5.8 mm mesially and 4.8 mm distally for implant #1, 3.3 mm and 2.3 mm for implant #2, 3.1 mm and 0.5 mm for implant #3, and 3.5 mm and 2.8 mm for implant #4. The histometric mean and maximum vertical bone gain for implant #1 to #4 was 1.65 mm and 2.54 mm, 3.04 mm and 3.47 mm, 0.43 mm and 1.27 mm, and 4.16 mm and 5.22 mm, respectively. The percentage of re-osseointegration for implant #1 to #4 was 21.0%, 36.9%, 5.7%, and 39.0%, respectively. In one implant, the newly formed bone was deposited directly onto calculus on the implant surface. CONCLUSIONS: We found that (1) re-osseointegration is possible on a formerly contaminated implant surface and (2) the electrolytic cleaning process seems to be effective enough at sites with calculus residues. CLINICAL RELEVANCE: Since re-osseointegration can be achieved by electrolytic cleaning, this decontamination technique may be considered as a future treatment concept.


Subject(s)
Dental Implants , Peri-Implantitis , Bone Regeneration , Humans , Osseointegration , Peri-Implantitis/surgery
10.
Clin Oral Investig ; 26(3): 2401-2411, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34608575

ABSTRACT

OBJECTIVES: We previously showed that accelerated degradation of collagen membranes (CMs) in diabetic rats is associated with increased infiltration of macrophages and blood vessels. Since pre-implantation immersion of CMs in cross-linked high molecular weight hyaluronic acid (CLHA) delays membrane degradation, we evaluated here its effect on the number of macrophages and endothelial cells (ECs) within the CM as a possible mechanism for inhibition of CM resorption. MATERIALS AND METHODS: Diabetes was induced with streptozotocin in 16 rats, while 16 healthy rats served as control. CM discs were labeled with biotin, soaked in CLHA or PBS, and implanted under the scalp. Fourteen days later, CMs were embedded in paraffin and the number of macrophages and ECs within the CMs was determined using antibodies against CD68 and transglutaminase II, respectively. RESULTS: Diabetes increased the number of macrophages and ECs within the CMs (∼2.5-fold and fourfold, respectively). Immersion of CMs in CLHA statistically significantly reduced the number of macrophages (p < 0.0001) in diabetic rats, but not that of ECs. In the healthy group, CLHA had no significant effect on the number of either cells. Higher residual collagen area and membrane thickness in CLHA-treated CMs in diabetic animals were significantly correlated with reduced number of macrophages but not ECs. CONCLUSIONS: Immersion of CM in CLHA inhibits macrophage infiltration and reduces CM degradation in diabetic animals. CLINICAL RELEVANCE: The combination of CLHA and CM may represent a valuable approach when guided tissue regeneration or guided bone regeneration procedures are performed in diabetic patients.


Subject(s)
Diabetes Mellitus, Experimental , Hyaluronic Acid , Animals , Collagen/metabolism , Diabetes Mellitus, Experimental/metabolism , Endothelial Cells , Humans , Hyaluronic Acid/pharmacology , Macrophages/metabolism , Rats , Rats, Wistar
11.
Front Cell Dev Biol ; 9: 682944, 2021.
Article in English | MEDLINE | ID: mdl-34179013

ABSTRACT

The prevalence of congenital anomalies in newborns is estimated to be as high as 6%, many of which involving the cranio-/orofacial region. Such malformations, including several syndromes, are usually identified prenatally, at birth, or rarely later in life. The lack of clinically relevant human cell models of these often very rare conditions, the societal pressure to avoid the use of animal models and the fact that the biological mechanisms between rodents and human are not necessarily identical, makes studying cranio-/orofacial anomalies challenging. To overcome these limitations, we are developing a living cell repository of healthy and diseased cells derived from the cranio-/orofacial region. Ultimately, we aim to make patient-derived cells, which retain the molecular and genetic characteristics of the original anomaly or disease in vitro, available for the scientific community. We report our efforts in establishing a human living cell bank derived from the cranio-/orofacial region of otherwise discarded tissue samples, detail our strategy, processes and quality checks. Such specific cell models have a great potential for discovery and translational research and might lead to a better understanding and management of craniofacial anomalies for the benefit of all affected individuals.

12.
Materials (Basel) ; 14(10)2021 May 18.
Article in English | MEDLINE | ID: mdl-34070127

ABSTRACT

Background: Stress concentrated at an implant's neck may affect bone-to-implant contact (BIC). The objective of this study was to evaluate four different implant neck designs using two different drilling protocols on the BIC. Methods: Ninety-six implants were inserted in 12 minipigs calvarium. Implants neck designs evaluated were: type 1-6 coronal flutes (CFs), 8 shallow microthreads (SMs); type 2-6 CFs,4 deep microthreads (DMs); type 3-4 DMs; type 4-2 CFs, 8 SMs. Two groups of forty-eight implants were inserted with a final drill diameter of 2.8 mm (DP1) or 3.2 mm (DP2). Animals were sacrificed after 1 and 3 months, total-BIC (t-BIC) and coronal-BIC (c-BIC) were evaluated by nondecalcified histomorphometry analysis. Results: At 1 month, t-BIC ranged from 85-91% without significant differences between implant types or drilling protocol. Flutes on the coronal aspect impaired the BIC at 3 m. c-BIC of implant types with 6 CFs was similar and significantly lower than that of implant types 3 and 4. c-BIC of implant type 4 with SMs was highest of all implant types after both healing periods. Conclusions: BIC was not affected by the drilling protocol. CFs significantly impaired the -BIC. Multiple SMs were associated with greater c-BIC.

14.
Clin Oral Implants Res ; 31(11): 1149-1158, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32881075

ABSTRACT

AIMS: The aim of this prospective, clinical study was to evaluate the clinical performance and histological outcome of a new equine hydroxyapatite collagenated bone block (eHAC) for horizontal bone grafting prior to implant placement. MATERIALS AND METHODS: Five patients (two male/three female) with a mean age of 51.6 years (range 22-66 years) and a reduced horizontal bone width of the alveolar ridge (mean 3.5 mm) underwent horizontal bone grafting using eHAC at 10 grafting sites. Reentry was performed 6.9 months after the horizontal grafting procedure. Clinical follow-up (mean 28.9 month) considered width gain of the alveolar ridge, soft tissue healing, and complications. To evaluate graft incorporation, four additional patients underwent histological assessment of equine blocks adjacent to autologous blocks 3 and 6 months after grafting. RESULTS: The study was terminated after graft failure was observed in four of five patients. Mean horizontal bone width had increased by 3.6 ± 1.22 mm. Three out of nine implants placed had to be removed due to graft failure. Histological evaluation revealed large amounts of soft connective tissue within the grafts (mean 67.3 ± 9.5%). The proportion of new bone formation 3 months after the lateral grafting procedure revealed an average of 8.6%, compared to 11.4% after 6 to 7 months. CONCLUSION: Lateral ridge grafting using eHAC achieved measurable horizontal width gain but revealed high rates of severe complications. CLINICAL IMPLICATIONS: Within the limitations of this study, eHAC bone blocks cannot be recommended for horizontal bone grafting.


Subject(s)
Alveolar Ridge Augmentation , Bone Transplantation , Adult , Aged , Animals , Cancellous Bone , Dental Implantation, Endosseous , Female , Horses , Humans , Male , Middle Aged , Pilot Projects , Prospective Studies , Treatment Outcome , Young Adult
15.
Materials (Basel) ; 13(15)2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32756413

ABSTRACT

Various treatments have been used to change both the topography and chemistry of titanium surfaces, aiming to enhance tissue response and reduce healing times of endosseous implants. Most studies to date focused on bone healing around dental implants occurring later during the healing cascade. However, the impact of the initial inflammatory response in the surgical wound site on the success and healing time of dental implants is crucial for implant integration and success, yet it is still poorly understood. The purpose of this study was to investigate the effect of titanium surface hydrophilicity on the response of human neutrophils by monitoring oxygen radical production, which was measured as chemiluminescence activity. Materials and Methods: Neutrophils were isolated from human donors' blood buffy coats using the double sucrose gradient method. Neutrophils were exposed to both hydrophilic and hydrophobic titanium surfaces with identical topographies in the presence and absence of human serum. This resulted in six experimental groups including two different implant surfaces, with and without exposure to human serum, and two control groups including an active control with cells alone and a passive control with no cells. Two samples from each group were fixed and analyzed by SEM. Comparisons between surface treatments for differences in chemiluminescence values were performed using analysis of variance ANOVA. Results and Conclusion: In the absence of exposure to serum, there was no significant difference noted between the reaction of neutrophils to hydrophilic and hydrophobic surfaces. However, there was a significant reduction in the mean and active chemiluminescence activity of neutrophils to serum-coated hydrophilic titanium surfaces than to serum-coated hydrophobic titanium surfaces. This suggests that surface hydrophilicity promotes enhanced adsorption of serum proteins, which leads to decreased provocation of initial immune cells and reduction of local oxygen radical production during wound healing. This can help explain the faster osseointegration demonstrated by hydrophilic titanium implants.

16.
Bone ; 141: 115598, 2020 12.
Article in English | MEDLINE | ID: mdl-32829037

ABSTRACT

INTRODUCTION: Pathologic vertebral fractures are a major clinical concern in the management of cancer patients with metastatic spine disease. These fractures are a direct consequence of the effect of bone metastases on the anatomy and structure of the vertebral bone. The goals of this study were twofold. First, we evaluated the effect of lytic, blastic and mixed (both lytic and blastic) metastases on the bone structure, on its material properties, and on the overall vertebral strength. Second, we tested the ability of bone mineral content (BMC) measurements and standard FE methodologies to predict the strength of real metastatic vertebral bodies. METHODS: Fifty-seven vertebral bodies from eleven cadaver spines containing lytic, blastic, and mixed metastatic lesions from donors with breast, esophageal, kidney, lung, or prostate cancer were scanned using micro-computed tomography (µCT). Based on radiographic review, twelve vertebrae were selected for nanoindentation testing, while the remaining forty-five vertebrae were used for assessing their compressive strength. The µCT reconstruction was exploited to measure the vertebral BMC and to establish two finite element models. 1) a micro finite element (µFE) model derived at an image resolution of 24.5 µm and 2) homogenized FE (hFE) model derived at a resolution of 0.98 mm. Statistical analyses were conducted to measure the effect of the bone metastases on BV/TV, indentation modulus (Eit), ratio of plastic/total work (WPl/Wtot), and in vitro vertebral strength (Fexp). The predictive value of BMC, µFE stiffness, and hFE strength were evaluated against the in vitro measurements. RESULTS: Blastic vertebral bodies exhibit significantly higher BV/TV compared to the mixed (p = 0.0205) and lytic (p = 0.0216) vertebral bodies. No significant differences were found between lytic and mixed vertebrae (p = 0.7584). Blastic bone tissue exhibited a 5.8% lower median Eit (p< 0.001) and a 3.3% lower median Wpl/Wtot (p<0.001) compared to non-involved bone tissue. No significant differences were measured between lytic and non-involved bone tissues. Fexp ranged from 1.9 to 13.8 kN, was strongly associated with hFE strength (R2=0.78, p< 0.001) and moderately associated with BMC (R2=0.66, p< 0.001) and µFE stiffness (R2=0.66, p< 0.001), independently of the lesion type. DISCUSSION: Our findings show that tumour-induced osteoblastic metastases lead to slightly, but significantly lower bone tissue properties compared to controls, while osteolytic lesions appear to have a negligible impact. These effects may be attributed to the lower mineralization and woven nature of bone forming in blastic lesions whilst the material properties of bone in osteolytic vertebrae appeared little changed. The moderate association between BMC- and FE-based predictions to fracture strength suggest that vertebral strength is affected by the changes of bone mass induced by the metastatic lesions, rather than altered tissue properties. In a broader context, standard hFE approaches generated from CTs at clinical resolution are robust to the lesion type when predicting vertebral strength. These findings open the door for the development of FE-based prediction tools that overcomes the limitations of BMC in accounting for shape and size of the metastatic lesions. Such tools may help clinicians to decide whether a patient needs the prophylactic fixation of an impending fracture.


Subject(s)
Neoplasms , Spine , Biomechanical Phenomena , Bone Density , Finite Element Analysis , Humans , Male , Spine/diagnostic imaging , X-Ray Microtomography
17.
Materials (Basel) ; 13(10)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466244

ABSTRACT

Collagen-based scaffolds hold great potential for tissue engineering, since they closely mimic the extracellular matrix. We investigated tissue integration of an engineered porous collagen-elastin scaffold developed for soft tissue augmentation. After implantation in maxillary submucosal pouches in 6 canines, cell invasion (vimentin), extracellular matrix deposition (collagen type I) and scaffold degradation (cathepsin k, tartrate-resistant acid phosphatase (TRAP), CD86) were (immuno)-histochemically evaluated. Invasion of vimentin+ cells (scattered and blood vessels) and collagen type I deposition within the pores started at 7 days. At 15 and 30 days, vimentin+ cells were still numerous and collagen type I increasingly filled the pores. Scaffold degradation was characterized by collagen loss mainly occurring around 15 days, a time point when medium-sized multinucleated cells peaked at the scaffold margin with simultaneous labeling for cathepsin k, TRAP, and CD86. Elastin was more resistant to degradation and persisted up to 90 days in form of packages well-integrated in the newly formed soft connective tissue. In conclusion, this collagen-based scaffold maintained long-enough volume stability to allow an influx of blood vessels and vimentin+ fibroblasts producing collagen type I, that filled the scaffold pores before major biomaterial degradation and collapse occurred. Cathepsin k, TRAP and CD86 appear to be involved in scaffold degradation.

18.
Clin Oral Investig ; 24(10): 3609-3617, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32034546

ABSTRACT

OBJECTIVES: To evaluate the crestal bone response to a two-piece zirconia implant compared with a control titanium implant using periapical radiographs (PAs) and histometry. MATERIALS AND METHODS: Thirty zirconia and 30 titanium implants were placed in healed posterior mandibles of five canines. Full-ceramic single-tooth restorations were cemented after 6 weeks of healing. Three observers measured the distance between the implant shoulder and the crestal bone (DIB) at placement, loading, and harvesting after 4 or 16 weeks in function. The influence of implant material and loading time on DIB as well as the inter-observer agreement were analyzed. Additionally, histometric distance between implant shoulder and most coronal bone-to-implant contact (IS-cBIC) was compared with DIB. RESULTS: Mean DIB values increased between 4 and 16 weeks of loading for both zirconia (from 1.66 to 2.25 mm; P < 0.0001) and titanium (from 1.81 to 1.95 mm; P = 0.06). Zirconia yielded mean IS-cBIC values of 2.18 mm and 2.48 mm (P < 0.001) and titanium 2.23 mm and 2.34 mm (P = 0.27) after 4 and 16 weeks, respectively. The raters reached an excellent intraclass correlation coefficient. PAs underestimated the bone loss on average by 0.39 mm. CONCLUSIONS: Zirconia implants showed a greater increase of DIB during early healing and function than titanium. CLINICAL RELEVANCE: Crestal peri-implant tissue dimensions may show more pronounced changes around two-piece zirconia implants during early healing. PAs may underestimate peri-implant bone loss.


Subject(s)
Alveolar Bone Loss , Dental Implants , Dental Implantation, Endosseous , Dental Prosthesis Design , Humans , Mandible , Osseointegration , Titanium , Zirconium
19.
J Periodontol ; 91(4): 516-523, 2020 04.
Article in English | MEDLINE | ID: mdl-31490010

ABSTRACT

BACKGROUND: Little is known regarding the interaction of dental implant surface nanotubes and oral soft and hard tissues. The purpose of this study was to evaluate both histologically and radiographically the qualitative and quantitative effects of dental implant surface nanotubes on hard and soft tissue in a canine model. METHODS: Three subgroups consisting of a combination of test and control implants and abutments (Group A: control implant/control abutment, Group B: control implant/test abutment: Group C: test implant/test abutment) were placed in edentulous mandibles of six large-breed canines. Implants and abutments were placed on one side at baseline, and on the opposite side of the mandible at week 10; sacrifice occurred at week 12. Quantitative and qualitative analyses were used to measure newly formed hard and soft tissues histologically and radiographically. RESULTS: The mean radiographic change in marginal bone level from weeks 0 to 12 between implant groups was not statistically significant (P > 0.05). Mean soft tissue contact (junctional epithelium + connective tissue) for Groups A, B, and C were 2.29, 2.33, and 2.31 mm, respectively, with no statistically significant difference (P > 0.05) between the groups. All connective tissue fibers were oriented parallel to the abutment regardless of surface treatment. CONCLUSIONS: The findings of this study suggest that healing of hard and soft tissues around implants and abutments is similar when comparing grit-blasted surfaces to machined, turned surfaces with nanotubes. Both resulted in similar soft tissue contact values, as well as connective tissue fiber orientation.


Subject(s)
Dental Implants , Nanotubes , Dental Abutments , Dental Implantation, Endosseous , Dental Prosthesis Design , Mandible/surgery , Surface Properties , Titanium
20.
Materials (Basel) ; 12(22)2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31718004

ABSTRACT

A short inflammatory phase and fast ingrowth of blood vessels and mesenchymal cells are essential for tissue integration of a biomaterial. Macrophages play a key role in this process. We investigated invasion of macrophages, blood vessels, and proliferating cells into a highly porous and volume-stable collagen matrix (VCMX) used for soft tissue augmentation around teeth and dental implants. The biomaterial was implanted in submucosal pouches in the canine maxilla, and the tissue response was analyzed at six different time points. Immunohistochemistry was done for proliferating cells (PCNA), macrophages (MAC387), multinucleated giant cells (CD86), and blood vessels (TGM2). Blood rapidly filled the VCMX pores. During the first week, MAC387+ cells populated the VCMX pores, blood vessels and PCNA+ cells invaded the VCMX, and CD86+ scattered cells were observed. At 15 days, MAC387+ cells were scanty, blood vessels had completely invaded the VCMX, the number of proliferating cells peaked, and fibroblasts appeared. At 30 days, MAC387+ were absent, the numbers of proliferating and CD86+ cells had declined, while blood vessel and fibroblast numbers were high. At 90 days, residual VCMX was well-integrated in soft connective tissue. In conclusion, the VCMX elicited a short inflammatory phase followed by rapid tissue integration.

SELECTION OF CITATIONS
SEARCH DETAIL
...