Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Nat Methods ; 21(7): 1349-1363, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849569

ABSTRACT

The Long-read RNA-Seq Genome Annotation Assessment Project Consortium was formed to evaluate the effectiveness of long-read approaches for transcriptome analysis. Using different protocols and sequencing platforms, the consortium generated over 427 million long-read sequences from complementary DNA and direct RNA datasets, encompassing human, mouse and manatee species. Developers utilized these data to address challenges in transcript isoform detection, quantification and de novo transcript detection. The study revealed that libraries with longer, more accurate sequences produce more accurate transcripts than those with increased read depth, whereas greater read depth improved quantification accuracy. In well-annotated genomes, tools based on reference sequences demonstrated the best performance. Incorporating additional orthogonal data and replicate samples is advised when aiming to detect rare and novel transcripts or using reference-free approaches. This collaborative study offers a benchmark for current practices and provides direction for future method development in transcriptome analysis.


Subject(s)
Gene Expression Profiling , RNA-Seq , Humans , Animals , Mice , RNA-Seq/methods , Gene Expression Profiling/methods , Transcriptome , Sequence Analysis, RNA/methods , Molecular Sequence Annotation/methods
2.
FASEB J ; 38(3): e23460, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38315443

ABSTRACT

Traumatic brain injury (TBI) is one of the leading causes of death worldwide. There are currently no effective treatments for TBI, and trauma survivors suffer from a variety of long-lasting health consequences. With nutritional support recently emerging as a vital step in improving TBI patients' outcomes, we sought to evaluate the potential therapeutic benefits of nutritional supplements derived from bovine thymus gland, which can deliver a variety of nutrients and bioactive molecules. In a rat model of controlled cortical impact (CCI), we determined that animals supplemented with a nuclear fraction of bovine thymus (TNF) display greatly improved performance on beam balance and spatial memory tests following CCI. Using RNA-Seq, we identified an array of signaling pathways that are modulated by TNF supplementation in rat hippocampus, including those involved in the process of autophagy. We further show that bovine thymus-derived extracts contain antigens found in neural tissues and that supplementation of rats with thymus extracts induces production of serum IgG antibodies against neuronal and glial antigens, which may explain the enhanced animal recovery following CCI through possible oral tolerance mechanism. Collectively, our data demonstrate, for the first time, the potency of a nutritional supplement containing nuclear fraction of bovine thymus in enhancing the functional recovery from TBI.


Subject(s)
Brain Injuries, Traumatic , Thymus Extracts , Humans , Rats , Animals , Cattle , Thymus Extracts/pharmacology , Thymus Extracts/therapeutic use , Brain Injuries, Traumatic/drug therapy , Neurons , Neuroglia , Hippocampus , Disease Models, Animal
3.
Nat Plants ; 9(10): 1643-1658, 2023 10.
Article in English | MEDLINE | ID: mdl-37770615

ABSTRACT

Here an improved carrot reference genome and resequencing of 630 carrot accessions were used to investigate carrot domestication and improvement. The study demonstrated that carrot was domesticated during the Early Middle Ages in the region spanning western Asia to central Asia, and orange carrot was selected during the Renaissance period, probably in western Europe. A progressive reduction of genetic diversity accompanied this process. Genes controlling circadian clock/flowering and carotenoid accumulation were under selection during domestication and improvement. Three recessive genes, at the REC, Or and Y2 quantitative trait loci, were essential to select for the high α- and ß-carotene orange phenotype. All three genes control high α- and ß-carotene accumulation through molecular mechanisms that regulate the interactions between the carotenoid biosynthetic pathway, the photosynthetic system and chloroplast biogenesis. Overall, this study elucidated carrot domestication and breeding history and carotenoid genetics at a molecular level.


Subject(s)
Daucus carota , beta Carotene , beta Carotene/metabolism , Daucus carota/genetics , Daucus carota/metabolism , Domestication , Metagenomics , Plant Breeding , Carotenoids/metabolism
4.
bioRxiv ; 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37546854

ABSTRACT

The Long-read RNA-Seq Genome Annotation Assessment Project (LRGASP) Consortium was formed to evaluate the effectiveness of long-read approaches for transcriptome analysis. The consortium generated over 427 million long-read sequences from cDNA and direct RNA datasets, encompassing human, mouse, and manatee species, using different protocols and sequencing platforms. These data were utilized by developers to address challenges in transcript isoform detection and quantification, as well as de novo transcript isoform identification. The study revealed that libraries with longer, more accurate sequences produce more accurate transcripts than those with increased read depth, whereas greater read depth improved quantification accuracy. In well-annotated genomes, tools based on reference sequences demonstrated the best performance. When aiming to detect rare and novel transcripts or when using reference-free approaches, incorporating additional orthogonal data and replicate samples are advised. This collaborative study offers a benchmark for current practices and provides direction for future method development in transcriptome analysis.

5.
Sci Rep ; 13(1): 11605, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463972

ABSTRACT

Papain (aka C1A) family proteases, including bromelain enzymes, are widespread across the plant kingdom and play critical regulatory functions in protein turnover during development. The proteolytic activity exhibited by papain family proteases has led to their increased usage for a wide range of cosmetic, therapeutic, and medicinal purposes. Bromelain enzymes, or bromelains in short, are members of the papain family that are specific to the bromeliad plant family. The only major commercial extraction source of bromelain is pineapple. The importance of C1A family and bromelain subfamily proteases in pineapple development and their increasing economic importance led several researchers to utilize available genomic resources to identify protease-encoding genes in the pineapple genome. To date, studies are lacking in screening bromelain genes for targeted use in applied science studies. In addition, the bromelain genes coding for the enzymes present in commercially available bromelain products have not been identified and their evolutionary origin has remained unclear. Here, using the newly developed MD2 v2 pineapple genome, we aimed to identify bromelain-encoding genes and elucidate their evolutionary origin. Orthologous and phylogenetic analyses of all papain-family proteases encoded in the pineapple genome revealed a single orthogroup (189) and phylogenetic clade (XIII) containing the bromelain subfamily. Duplication mode and synteny analyses provided insight into the origin and expansion of the bromelain subfamily in pineapple. Proteomic analysis identified four bromelain enzymes present in two commercially available bromelain products derived from pineapple stem, corresponding to products of four putative bromelain genes. Gene expression analysis using publicly available transcriptome data showed that 31 papain-family genes identified in this study were up-regulated in specific tissues, including stem, fruit, and floral tissues. Some of these genes had higher expression in earlier developmental stages of different tissues. Similar expression patterns were identified by RT-qPCR analysis with leaf, stem, and fruit. Our results provide a strong foundation for future applicable studies on bromelain, such as transgenic approaches to increase bromelain content in pineapple, development of bromelain-producing bioreactors, and studies that aim to determine the medicinal and/or therapeutic viability of individual bromelain enzymes.


Subject(s)
Ananas , Bromelains , Bromelains/genetics , Bromelains/metabolism , Ananas/genetics , Ananas/metabolism , Papain , Phylogeny , Proteomics
6.
Sci Adv ; 9(7): eabq7744, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36800423

ABSTRACT

SMCHD1 mutations cause congenital arhinia (absent nose) and a muscular dystrophy called FSHD2. In FSHD2, loss of SMCHD1 repressive activity causes expression of double homeobox 4 (DUX4) in muscle tissue, where it is toxic. Studies of arhinia patients suggest a primary defect in nasal placode cells (human nose progenitors). Here, we show that upon SMCHD1 ablation, DUX4 becomes derepressed in H9 human embryonic stem cells (hESCs) as they differentiate toward a placode cell fate, triggering cell death. Arhinia and FSHD2 patient-derived induced pluripotent stem cells (iPSCs) express DUX4 when converted to placode cells and demonstrate variable degrees of cell death, suggesting an environmental disease modifier. HSV-1 may be one such modifier as herpesvirus infection amplifies DUX4 expression in SMCHD1 KO hESC and patient iPSC. These studies suggest that arhinia, like FSHD2, is due to compromised SMCHD1 repressive activity in a cell-specific context and provide evidence for an environmental modifier.


Subject(s)
Congenital Abnormalities , Homeodomain Proteins , Muscular Dystrophy, Facioscapulohumeral , Nose , Transcription Factors , Humans , Chromosomal Proteins, Non-Histone/metabolism , Gene Expression Regulation , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , Transcription Factors/metabolism , Congenital Abnormalities/genetics , Nose/abnormalities
7.
New Phytol ; 237(3): 1024-1039, 2023 02.
Article in English | MEDLINE | ID: mdl-35962608

ABSTRACT

Understanding chromosome recombination behavior in polyploidy species is key to advancing genetic discoveries. In blueberry, a tetraploid species, the line of evidences about its genetic behavior still remain poorly understood, owing to the inter-specific, and inter-ploidy admixture of its genome and lack of in depth genome-wide inheritance and comparative structural studies. Here we describe a new high-quality, phased, chromosome-scale genome of a diploid blueberry, clone W85. The genome was integrated with cytogenetics and high-density, genetic maps representing six tetraploid blueberry cultivars, harboring different levels of wild genome admixture, to uncover recombination behavior and structural genome divergence across tetraploid and wild diploid species. Analysis of chromosome inheritance and pairing demonstrated that tetraploid blueberry behaves as an autotetraploid with tetrasomic inheritance. Comparative analysis demonstrated the presence of a reciprocal, heterozygous, translocation spanning one homolog of chr-6 and one of chr-10 in the cultivar Draper. The translocation affects pairing and recombination of chromosomes 6 and 10. Besides the translocation detected in Draper, no other structural genomic divergences were detected across tetraploid cultivars and highly inter-crossable wild diploid species. These findings and resources will facilitate new genetic and comparative genomic studies in Vaccinium and the development of genomic assisted selection strategy for this crop.


Subject(s)
Blueberry Plants , Tetraploidy , Blueberry Plants/genetics , Inheritance Patterns , Polyploidy , Chromosomes
8.
Hortic Res ; 2022 01 18.
Article in English | MEDLINE | ID: mdl-35039852

ABSTRACT

In this study we investigated the transcriptome and epigenome dynamics of the tomato fruit during post-harvest in a landrace belonging to a group of tomatoes (Solanum lycopersicum L.) collectively known as "Piennolo del Vesuvio", all characterized by a long shelf-life. Expression of protein-coding genes and microRNAs as well as DNA methylation patterns and histone modifications were analysed in distinct post-harvest phases. Multi-omics data integration contributed to the elucidation of the molecular mechanisms underlying processes leading to long shelf-life. We unveiled global changes in transcriptome and epigenome. DNA methylation increased and the repressive histone mark H3K27me3 was lost as the fruit progressed from red ripe to 150 days post-harvest. Thousands of genes were differentially expressed, about half of which were potentially epi-regulated as they were engaged in at least one epi-mark change in addition to being microRNA targets in ~5% of cases. Down-regulation of the ripening regulator MADS-RIN and of genes involved in ethylene response and cell wall degradation was consistent with the delayed fruit softening. Large-scale epigenome reprogramming that occurred in the fruit during post-harvest likely contributed to delayed fruit senescence.

9.
Hortic Res ; 8(1): 169, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34333532

ABSTRACT

Fruit quality traits play a significant role in consumer preferences and consumption in blueberry (Vaccinium corymbosum L). The objectives of this study were to construct a high-density linkage map and to identify the underlying genetic basis of fruit quality traits in blueberry. A total of 287 F1 individuals derived from a cross between two southern highbush blueberry cultivars, 'Reveille' and 'Arlen', were phenotyped over three years (2016-2018) for fruit quality-related traits, including titratable acidity, pH, total soluble solids, and fruit weight. A high-density linkage map was constructed using 17k single nucleotide polymorphisms markers. The linkage map spanned a total of 1397 cM with an average inter-loci distance of 0.08 cM. The quantitative trait loci interval mapping based on the hidden Markov model identified 18 loci for fruit quality traits, including seven loci for fruit weight, three loci for titratable acidity, five loci for pH, and three loci for total soluble solids. Ten of these loci were detected in more than one year. These loci explained phenotypic variance ranging from 7 to 28% for titratable acidity and total soluble solid, and 8-13% for pH. However, the loci identified for fruit weight did not explain more than 10% of the phenotypic variance. We also reported the association between fruit quality traits and metabolites detected by Proton nuclear magnetic resonance analysis directly responsible for these fruit quality traits. Organic acids, citric acid, and quinic acid were significantly (P < 0.05) and positively correlated with titratable acidity. Sugar molecules showed a strong and positive correlation with total soluble solids. Overall, the study dissected the genetic basis of fruit quality traits and established an association between these fruit quality traits and metabolites.

10.
Front Plant Sci ; 12: 692628, 2021.
Article in English | MEDLINE | ID: mdl-34234801

ABSTRACT

Genotyping by sequencing approaches have been widely applied in major crops and are now being used in horticultural crops like berries and fruit trees. As the original and largest producer of cultivated blueberry, the United States maintains the most diverse blueberry germplasm resources comprised of many species of different ploidy levels. We previously constructed an interspecific mapping population of diploid blueberry by crossing the parent F1#10 (Vaccinium darrowii Fla4B × diploid V. corymbosum W85-20) with the parent W85-23 (diploid V. corymbosum). Employing the Capture-Seq technology developed by RAPiD Genomics, with an emphasis on probes designed in predicted gene regions, 117 F1 progeny, the two parents, and two grandparents of this population were sequenced, yielding 131.7 Gbp clean sequenced reads. A total of 160,535 single nucleotide polymorphisms (SNPs), referenced to 4,522 blueberry genome sequence scaffolds, were identified and subjected to a parent-dependent sliding window approach to further genotype the population. Recombination breakpoints were determined and marker bins were deduced to construct a high density linkage map. Twelve blueberry linkage groups (LGs) consisting of 17,486 SNP markers were obtained, spanning a total genetic distance of 1,539.4 cM. Among 18 horticultural traits phenotyped in this population, quantitative trait loci (QTLs) that were significant over at least 2 years were identified for chilling requirement, cold hardiness, and fruit quality traits of color, scar size, and firmness. Interestingly, in 1 year, a QTL associated with timing of early bloom, full bloom, petal fall, and early green fruit was identified in the same region harboring the major QTL for chilling requirement. In summary, we report here the first high density bin map of a diploid blueberry mapping population and the identification of several horticulturally important QTLs.

11.
Plant Genome ; 14(2): e20101, 2021 07.
Article in English | MEDLINE | ID: mdl-34109759

ABSTRACT

Spinach (Spinacia oleracea L.) is a member of the Caryophyllales family, a basal eudicot asterid that consists of sugar beet (Beta vulgaris L. subsp. vulgaris), quinoa (Chenopodium quinoa Willd.), and amaranth (Amaranthus hypochondriacus L.). With the introduction of baby leaf types, spinach has become a staple food in many homes. Production issues focus on yield, nitrogen-use efficiency and resistance to downy mildew (Peronospora effusa). Although genomes are available for the above species, a chromosome-level assembly exists only for quinoa, allowing for proper annotation and structural analyses to enhance crop improvement. We independently assembled and annotated genomes of the cultivar Viroflay using short-read strategy (Illumina) and long-read strategies (Pacific Biosciences) to develop a chromosome-level, genetically anchored assembly for spinach. Scaffold N50 for the Illumina assembly was 389 kb, whereas that for Pacific BioSciences was 4.43 Mb, representing 911 Mb (93% of the genome) in 221 scaffolds, 80% of which are anchored and oriented on a sequence-based genetic map, also described within this work. The two assemblies were 99.5% collinear. Independent annotation of the two assemblies with the same comprehensive transcriptome dataset show that the quality of the assembly directly affects the annotation with significantly more genes predicted (26,862 vs. 34,877) in the long-read assembly. Analysis of resistance genes confirms a bias in resistant gene motifs more typical of monocots. Evolutionary analysis indicates that Spinacia is a paleohexaploid with a whole-genome triplication followed by extensive gene rearrangements identified in this work. Diversity analysis of 75 lines indicate that variation in genes is ample for hypothesis-driven, genomic-assisted breeding enabled by this work.


Subject(s)
Peronospora , Spinacia oleracea , Chromosomes , Gene Rearrangement , Plant Breeding , Spinacia oleracea/genetics
12.
Genes (Basel) ; 13(1)2021 12 24.
Article in English | MEDLINE | ID: mdl-35052394

ABSTRACT

Pineapple (Ananas comosus (L.) Merr.) is the second most important tropical fruit crop globally, and 'MD2' is the most important cultivated variety. A high-quality genome is important for molecular-based breeding, but available pineapple genomes still have some quality limitations. Here, PacBio and Hi-C data were used to develop a new high-quality MD2 assembly and gene prediction. Compared to the previous MD2 assembly, major improvements included a 26.6-fold increase in contig N50 length, phased chromosomes, and >6000 new genes. The new MD2 assembly also included 161.6 Mb additional sequences and >3000 extra genes compared to the F153 genome. Over 48% of the predicted genes harbored potential deleterious mutations, indicating that the high level of heterozygosity in this species contributes to maintaining functional alleles. The genome was used to characterize the FAR1-RELATED SEQUENCE (FRS) genes that were expanded in pineapple and rice. Transposed and dispersed duplications contributed to expanding the numbers of these genes in the pineapple lineage. Several AcFRS genes were differentially expressed among tissue-types and stages of flower development, suggesting that their expansion contributed to evolving specialized functions in reproductive tissues. The new MD2 assembly will serve as a new reference for genetic and genomic studies in pineapple.


Subject(s)
Ananas/genetics , Chromosomes, Plant/genetics , Genetic Variation , Genome, Plant , Haplotypes , Molecular Sequence Annotation/methods , Plant Proteins/genetics , Ananas/growth & development , Chromosome Mapping , Gene Expression Regulation, Plant , Genomics , Sequence Analysis, DNA
13.
Sci Rep ; 10(1): 17311, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33057109

ABSTRACT

In the present study, we applied a novel high-throughput in vitro gastrointestinal digestion model to phenotype bioaccessibility of phenolics in a diverse germplasm collection representing cultivated highbush blueberries. Results revealed significant (P < 0.05) differences between accessions, years, and accession by year interaction for relative and absolute bioaccessibility of flavonoids and phenolic acids. Broad sense heritability estimates revealed low to moderate inheritances of relative and absolute bioaccessibility, suggesting that besides environmental variables, genetics factors could control bioaccessibility of phenolics. Acylated anthocyanins had significantly higher relative bioaccessibility than non-acylated anthocyanins. Correlation analysis indicated that relative bioaccessibility did not show significant association with fruit quality or raw concentration of metabolites. The study also identified accessions that have high relative and absolute bioaccessibility values. Overall, combining the bioaccessibility of phenolics with genetic and genomic approaches will enable the identification of genotypes and genetic factors influencing these traits in blueberry.


Subject(s)
Blueberry Plants/genetics , Blueberry Plants/metabolism , Digestion , Flavonoids/metabolism , Hydroxybenzoates/metabolism , Genotype , In Vitro Techniques
14.
BMC Genomics ; 21(1): 34, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31924169

ABSTRACT

BACKGROUND: Venom is one of the most important sources of regulation factors used by parasitic Hymenoptera to redirect host physiology in favour of the developing offspring. This has stimulated a number of studies, both at functional and "omics" level, which, however, are still quite limited for ectophagous parasitoids that permanently paralyze and suppress their victims (i.e., idiobiont parasitoids). RESULTS: Here we present a combined transcriptomic and proteomic study of the venom of the generalist idiobiont wasp Bracon nigricans, an ectophagous larval parasitoid of different lepidopteran species, for which we recently described the host regulation strategy and the functional role of the venom in the induction of physiological changes in parasitized hosts. The experimental approach used led to the identification of the main components of B. nigricans venom involved in host regulation. Enzymes degrading lipids, proteins and carbohydrates are likely involved in the mobilization of storage nutrients from the fat body and may concurrently be responsible for the release of neurotoxic fatty acids inducing paralysis, and for the modulation of host immune responses. CONCLUSION: The present work contributes to fill the gap of knowledge on venom composition in ectoparasitoid wasps, and, along with our previous physiological study on this species, provides the foundation on which to develop a functional model of host regulation, based both on physiological and molecular data. This paves the way towards a better understanding of parasitism evolution in the basal lineages of Hymenoptera and to the possible exploitation of venom as source of bioinsecticidal molecules.


Subject(s)
Wasp Venoms/metabolism , Wasps/metabolism , Animals , Host-Parasite Interactions , Insect Proteins/genetics , Insect Proteins/metabolism , Proteomics , Transcriptome/genetics , Wasp Venoms/genetics , Wasps/genetics
15.
Front Plant Sci ; 10: 1770, 2019.
Article in English | MEDLINE | ID: mdl-32082341

ABSTRACT

Anthocyanins are natural health promoting pigments that can be produced in large quantities in some purple carrot cultivars. Decoration patterns of anthocyanins, such as acylation, can greatly influence their stability and biological properties and use in the food industry as nutraceuticals and natural colorants. Despite recent advances made toward understanding the genetic control of anthocyanin accumulation in purple carrot, the genetic mechanism controlling acylation of anthocyanin in carrot root have not been studied yet. In the present study, we performed fine mapping combined with gene expression analyses (RNA-Seq and RT-qPCR) to identify the genetic factor conditioning the accumulation of non-acylated (Cy3XGG) versus acylated (Cy3XFGG and Cy3XSGG) cyanidin derivatives, in three carrot populations. Segregation and mapping analysis pointed to a single gene with dominant effect controlling anthocyanin acylation in the root, located in a 576kb region containing 29 predicted genes. Orthologous and phylogenetic analyses enabled the identification of a cluster of three SCPL-acyltransferases coding genes within this region. Comparative transcriptome analysis indicated that only one of these three genes, DcSCPL1, was always expressed in association with anthocyanin pigmentation in the root and was co-expressed with DcMYB7, a gene known to activate anthocyanin biosynthetic genes in carrot. DcSCPL1 sequence analysis, in root tissue containing a low level of acylated anthocyanins, demonstrated the presence of an insertion causing an abnormal splicing of the 3rd exon during mRNA editing, likely resulting in the production of a non-functional acyltransferase and explaining the reduced acylation phenotype. This study provides strong linkage-mapping and functional evidences for the candidacy of DcSCPL1 as a primary regulator of anthocyanin acylation in carrot storage root.

16.
BMC Bioinformatics ; 19(Suppl 15): 435, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30497367

ABSTRACT

BACKGROUND: "Omics" approaches may provide useful information for a deeper understanding of speciation events, diversification and function innovation. This can be achieved by investigating the molecular similarities at sequence level between species, allowing the definition of ortholog and paralog genes. However, the spreading of sequenced genome, often endowed with still preliminary annotations, requires suitable bioinformatics to be appropriately exploited in this framework. RESULTS: We presented here a multilevel comparative approach to investigate on genome evolutionary relationships and peculiarities of two fleshy fruit species of relevant agronomic interest, Solanum lycopersicum (tomato) and Vitis vinifera (grapevine). We defined 17,823 orthology relationships between tomato and grapevine reference gene annotations. The resulting orthologs are associated with the detected paralogs in each species, permitting the definition of gene networks, useful to investigate the different relationships. The reconciliation of the compared collections in terms of an updating of the functional descriptions was also exploited. All the results were made accessible in ComParaLogs, a dedicated bioinformatics platform available at http://biosrv.cab.unina.it/comparalogs/gene/search . CONCLUSIONS: The aim of the work was to suggest a reliable approach to detect all similarities of gene loci between two species based on the integration of results from different levels of information, such as the gene, the transcript and the protein sequences, overcoming possible limits due to exclusive protein versus protein comparisons. This to define reliable ortholog and paralog genes, as well as species specific gene loci in the two species, overcoming limits due to the possible draft nature of preliminary gene annotations. Moreover, reconciled functional descriptions, as well as common or peculiar enzymatic classes and protein domains from tomato and grapevine, together with the definition of species-specific gene sets after the pairwise comparisons, contributed a comprehensive set of information useful to comparatively exploit the two species gene annotations and investigate on differences between species with climacteric and non-climacteric fruits. In addition, the definition of networks of ortholog genes and of associated paralogs, and the organization of web-based interfaces for the exploration of the results, defined a friendly computational bench-work in support of comparative analyses between two species.


Subject(s)
Biological Evolution , Computational Biology/methods , Molecular Sequence Annotation , Multilevel Analysis , Solanum lycopersicum/genetics , Vitis/genetics , Gene Expression Regulation, Plant , Gene Regulatory Networks , Genome, Plant , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism
17.
Genes (Basel) ; 9(9)2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30149572

ABSTRACT

The carrot is the most popular root vegetable worldwide. The genetic makeup underlying the development of the edible storage root are fragmentary. Here, we report the first comparative transcriptome analysis between wild and cultivated carrot roots at multiple developmental stages. Overall, 3285, 4637, and 570 genes were differentially expressed in the cultivated carrot in comparisons made for young plants versus developing roots, young plants versus mature roots, and developing roots versus mature roots, respectively. Of those, 1916, 2645, and 475, respectively, were retained after filtering out genes showing similar profiles of expression in the wild carrot. They were assumed to be of special interest with respect to the development of the storage root. Among them, transcription factors and genes encoding proteins involved in post-translational modifications (signal transduction and ubiquitination) were mostly upregulated, while those involved in redox signaling were mostly downregulated. Also, genes encoding proteins regulating cell cycle, involved in cell divisions, development of vascular tissue, water transport, and sugar metabolism were enriched in the upregulated clusters. Genes encoding components of photosystem I and II, together with genes involved in carotenoid biosynthesis, were upregulated in the cultivated roots, as opposed to the wild roots; however, they were largely downregulated in the mature storage root, as compared with the young and developing root. The experiment produced robust resources for future investigations on the regulation of storage root formation in carrot and Apiaceae.

18.
DNA Res ; 25(2): 149-160, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29149280

ABSTRACT

Tomato is a high value crop and the primary model for fleshy fruit development and ripening. Breeding priorities include increased fruit quality, shelf life and tolerance to stresses. To contribute towards this goal, we re-sequenced the genomes of Corbarino (COR) and Lucariello (LUC) landraces, which both possess the traits of plant adaptation to water deficit, prolonged fruit shelf-life and good fruit quality. Through the newly developed pipeline Reconstructor, we generated the genome sequences of COR and LUC using datasets of 65.8 M and 56.4 M of 30-150 bp paired-end reads, respectively. New contigs including reads that could not be mapped to the tomato reference genome were assembled, and a total of 43, 054 and 44, 579 gene loci were annotated in COR and LUC. Both genomes showed novel regions with similarity to Solanum pimpinellifolium and Solanum pennellii. In addition to small deletions and insertions, 2, 000 and 1, 700 single nucleotide polymorphisms (SNPs) could exert potentially disruptive effects on 1, 371 and 1, 201 genes in COR and LUC, respectively. A detailed survey of the SNPs occurring in fruit quality, shelf life and stress tolerance related-genes identified several candidates of potential relevance. Variations in ethylene response components may concur in determining peculiar phenotypes of COR and LUC.


Subject(s)
Fruit/genetics , Genome, Plant , Polymorphism, Genetic , Solanum lycopersicum/genetics , Stress, Physiological/genetics , Whole Genome Sequencing , Base Sequence , Genes, Plant , Genomics
19.
Front Plant Sci ; 9: 1927, 2018.
Article in English | MEDLINE | ID: mdl-30693006

ABSTRACT

Purple carrots can accumulate large quantities of anthocyanins in their roots and -in some genetic backgrounds- petioles, and therefore they represent an excellent dietary source of antioxidant phytonutrients. In a previous study, using linkage analysis in a carrot F2 mapping population segregating for root and petiole anthocyanin pigmentation, we identified a region in chromosome 3 with co-localized QTL for all anthocyanin pigments of the carrot root, whereas petiole pigmentation segregated as a single dominant gene and mapped to one of these "root pigmentation" regions conditioning anthocyanin biosynthesis. In the present study, we performed fine mapping combined with gene expression analyses (RNA-Seq and RT-qPCR) to identify candidate genes controlling anthocyanin pigmentation in the carrot root and petiole. Fine mapping was performed in four carrot populations with different genetic backgrounds and patterns of pigmentation. The regions controlling root and petiole pigmentation in chromosome 3 were delimited to 541 and 535 kb, respectively. Genome wide prediction of transcription factor families known to regulate the anthocyanin biosynthetic pathway coupled with orthologous and phylogenetic analyses enabled the identification of a cluster of six MYB transcription factors, denominated DcMYB6 to DcMYB11, associated with the regulation of anthocyanin biosynthesis. No anthocyanin biosynthetic genes were present in this region. Comparative transcriptome analysis indicated that upregulation of DcMYB7 was always associated with anthocyanin pigmentation in both root and petiole tissues, whereas DcMYB11 was only upregulated with pigmentation in petioles. In the petiole, the level of expression of DcMYB11 was higher than DcMYB7. DcMYB6, a gene previously suggested as a key regulator of carrot anthocyanin biosynthesis, was not consistently associated with pigmentation in either tissue. These results strongly suggest that DcMYB7 is a candidate gene for root anthocyanin pigmentation in all the genetic backgrounds included in this study. DcMYB11 is a candidate gene for petiole pigmentation in all the purple carrot sources in this study. Since DcMYB7 is co-expressed with DcMYB11 in purple petioles, the latter gene may act also as a co-regulator of anthocyanin pigmentation in the petioles. This study provides linkage-mapping and functional evidence for the candidacy of these genes for the regulation of carrot anthocyanin biosynthesis.

20.
G3 (Bethesda) ; 7(8): 2665-2675, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28663343

ABSTRACT

Domesticated carrots, Daucus carota subsp. sativus, are the richest source of ß-carotene in the US diet, which, when consumed, is converted into vitamin A, an essential component of eye health and immunity. The Y2 locus plays a significant role in beta-carotene accumulation in carrot roots, but a candidate gene has not been identified. To advance our understanding of this locus, the genetic basis of ß-carotene accumulation was explored by utilizing an advanced mapping population, transcriptome analysis, and nucleotide diversity in diverse carrot accessions with varying levels of ß-carotene. A single large effect Quantitative Trait Locus (QTL) on the distal arm of chromosome 7 overlapped with the previously identified ß-carotene accumulation QTL, Y2 Fine mapping efforts reduced the genomic region of interest to 650 kb including 72 genes. Transcriptome analysis within this fine mapped region identified four genes differentially expressed at two developmental time points, and 13 genes differentially expressed at one time point. These differentially expressed genes included transcription factors and genes involved in light signaling and carotenoid flux, including a member of the Di19 gene family involved in Arabidopsis photomorphogenesis, and a homolog of the bHLH36 transcription factor involved in maize carotenoid metabolism. Analysis of nucleotide diversity in 25 resequenced carrot accessions revealed a drastic decrease in diversity of this fine-mapped region in orange cultivated accessions as compared to white and yellow cultivated and to white wild samples. The results presented in this study provide a foundation to identify and characterize the gene underlying ß-carotene accumulation in carrot.


Subject(s)
Daucus carota/genetics , Gene Expression Profiling , Genes, Plant , Physical Chromosome Mapping , beta Carotene/metabolism , Amino Acid Sequence , Chromosomes, Plant/genetics , Genetic Markers , Inheritance Patterns/genetics , Nucleotides/genetics , Phenotype , Plant Roots/genetics , Quantitative Trait Loci/genetics , Sequence Analysis, DNA , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...