Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
2.
CNS Oncol ; 13(1): 2345579, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38722227

ABSTRACT

Background: Treatment for refractory or relapsed primary CNS lymphoma (r/r PCNSL) is challenging. Salvage whole-brain radiation therapy (WBRT) is an option but has a short duration of disease control, so additional treatment modalities are warranted. Case: A 75-year-old female with r/r PCNSL who had multiple progressions after multiple lines of treatment underwent salvage WBRT. The patient received ibrutinib, a Bruton's tyrosine kinase inhibitor, as maintenance therapy for 18 months following WBRT with the intention of increasing survival duration after salvage WBRT. She survived 81 months from diagnosis, including 57 months after completion of WBRT. Conclusion: This case presentation describes the experience of using ibrutinib as maintenance therapy in treating r/r PCNSL after salvage WBRT.


Treatment for refractory or relapsed primary CNS lymphoma (r/r PCNSL) is difficult. Salvage whole-brain radiation therapy (WBRT) is one treatment choice, but the effects do not last very long. Therefore, additional treatment regimens are needed. The authors report a 75-year-old female with r/r PCNSL who had several progressions after multiple lines of treatment and underwent salvage WBRT. Following WBRT, the patient received ibrutinib, a Bruton's tyrosine kinase inhibitor, as maintenance therapy for 18 months to increase the duration of survival after salvage WBRT. She survived 81 months from diagnosis, including 57 months after completion of WBRT. This case reflects the experience of using ibrutinib as maintenance therapy in treating r/r PCNSL after salvage WBRT.


Subject(s)
Adenine , Central Nervous System Neoplasms , Neoplasm Recurrence, Local , Piperidines , Pyrazoles , Pyrimidines , Humans , Piperidines/therapeutic use , Adenine/analogs & derivatives , Adenine/therapeutic use , Female , Aged , Central Nervous System Neoplasms/drug therapy , Central Nervous System Neoplasms/therapy , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/therapy , Neoplasm Recurrence, Local/pathology , Salvage Therapy , Remission Induction , Lymphoma/drug therapy , Lymphoma/therapy , Lymphoma/radiotherapy
3.
bioRxiv ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38464047

ABSTRACT

Medulloblastoma, the most common pediatric brain malignancy, has Sonic Hedgehog (SHH) and non-SHH group3 subtypes. MAGMAS (Mitochondrial Associated Granulocyte Macrophage colony-stimulating factor Signaling molecules) encode for mitochondrial import inner membrane translocase subunit and is responsible for translocation of matrix proteins across the inner membrane. We previously reported that a small molecule MAGMAS inhibitor, BT9, decreases cell proliferation, migration, and oxidative phosphorylation in adult glioblastoma cell lines. The aim of our study was to investigate whether the chemotherapeutic effect of BT9 can be extended to pediatric medulloblastoma. Methods: Multiple in vitro assays were performed using human DAOY (SHH activated tp53 mutant) and D425 (non-SHH group 3) cells. The impact of BT9 on cellular growth, death, migration, invasion, and metabolic activity were quantified using MTT assay, TUNEL staining, scratch wound assay, Matrigel invasion chambers, and seahorse assay, respectively. Survival following 50mg/kg BT9 treatment was assessed in vivo in immunodeficient mice intracranially implanted with D425 cells. Results: Compared to control, BT9 treatment led to a significant reduction in medulloblastoma cell growth (DAOY, 24hrs IC50: 3.6uM, 48hrs IC50: 2.3uM, 72hrs IC50: 2.1uM; D425 24hrs IC50: 3.4uM, 48hrs IC50: 2.2uM, 72hrs IC50: 2.1uM) and a significant increase in cell death (DAOY, 24hrs p=0.0004, 48hrs p<0.0001; D425, 24hrs p=0.0001, 48hrs p=0.02). In DAOY cells, 3uM BT9 delayed migration, and significantly decreased DAOY and D425 cells invasion (p < 0.0001). Our in vivo study, however, did not extend survival in xenograft mouse model of group3 medulloblastoma compared to vehicle-treated controls. Conclusions: Our in vitro data showed BT9 antitumor efficacy in DAOY and D425 cell lines suggesting that BT9 may represent a promising targeted therapeutic in pediatric medulloblastoma. These data, however, need to be further validated in animal models.

4.
Neuro Oncol ; 26(9): 1670-1682, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38502052

ABSTRACT

BACKGROUND: Standard treatment for patients with newly diagnosed glioblastoma includes surgery, radiotherapy (RT), and temozolomide (TMZ) chemotherapy (TMZ/RT→TMZ). The proteasome has long been considered a promising therapeutic target because of its role as a central biological hub in tumor cells. Marizomib is a novel pan-proteasome inhibitor that crosses the blood-brain barrier. METHODS: European Organisation for Research and Treatment of Cancer 1709/Canadian Cancer Trials Group CE.8 was a multicenter, randomized, controlled, open-label phase 3 superiority trial. Key eligibility criteria included newly diagnosed glioblastoma, age > 18 years and Karnofsky performance status > 70. Patients were randomized in a 1:1 ratio. The primary objective was to compare overall survival (OS) in patients receiving marizomib in addition to TMZ/RT→TMZ with patients receiving the only standard treatment in the whole population and in the subgroup of patients with MGMT promoter-unmethylated tumors. RESULTS: The trial was opened at 82 institutions in Europe, Canada, and the U.S. A total of 749 patients (99.9% of the planned 750) were randomized. OS was not different between the standard and the marizomib arm (median 17 vs. 16.5 months; HR = 1.04; P = .64). PFS was not statistically different either (median 6.0 vs. 6.3 months; HR = 0.97; P = .67). In patients with MGMT promoter-unmethylated tumors, OS was also not different between standard therapy and marizomib (median 14.5 vs. 15.1 months, HR = 1.13; P = .27). More CTCAE grade 3/4 treatment-emergent adverse events were observed in the marizomib arm than in the standard arm. CONCLUSIONS: Adding marizomib to standard temozolomide-based radiochemotherapy resulted in more toxicity, but did not improve OS or PFS in patients with newly diagnosed glioblastoma.


Subject(s)
Brain Neoplasms , Glioblastoma , Lactones , Temozolomide , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Male , Middle Aged , Female , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Aged , Lactones/therapeutic use , Adult , Temozolomide/therapeutic use , Temozolomide/administration & dosage , Pyrroles/therapeutic use , Pyrroles/administration & dosage , Survival Rate , DNA Repair Enzymes/genetics , Follow-Up Studies , DNA Modification Methylases/genetics , Chemoradiotherapy/methods , Prognosis , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Young Adult
5.
Exp Neurol ; 375: 114717, 2024 May.
Article in English | MEDLINE | ID: mdl-38336286

ABSTRACT

Cancer-related cognitive impairments (CRCI) are neurological complications associated with cancer treatment, and greatly affect cancer survivors' quality of life. Brain-derived neurotrophic factor (BDNF) plays an essential role in neurogenesis, learning and memory. The reduction of BDNF is associated with the decrease in cognitive function in various neurological disorders. Few pre-clinical studies have reported on the effects of chemotherapy and medical stress on BDNF levels and cognition. The present study aimed to compare the effects of medical stress and cisplatin on serum BDNF levels and cognitive function in 9-month-old female Sprague Dawley rats to age-matched controls. Serum BDNF levels were collected longitudinally during cisplatin treatment, and cognitive function was assessed by novel object recognition (NOR) 14 weeks post-cisplatin initiation. Terminal BDNF levels were collected 24 weeks after cisplatin initiation. In cultured hippocampal neurons, we screened three neuroprotective agents, riluzole (an approved treatment for amyotrophic lateral sclerosis), as well as the ampakines CX546 and CX1739. We assessed dendritic arborization by Sholl analysis and dendritic spine density by quantifying postsynaptic density-95 (PSD-95) puncta. Cisplatin and exposure to medical stress reduced serum BDNF levels and impaired object discrimination in NOR compared to age-matched controls. Pharmacological BDNF augmentation protected neurons against cisplatin-induced reductions in dendritic branching and PSD-95. Ampakines (CX546 and CX1739) and riluzole did not affect the antitumor efficacy of cisplatin in vitro. In conclusion, we established the first middle-aged rat model of cisplatin-induced CRCI, assessing the contribution of medical stress and longitudinal changes in BDNF levels on cognitive function, although future studies are warranted to assess the efficacy of BDNF enhancement in vivo on synaptic plasticity. Collectively, our results indicate that cancer treatment exerts long-lasting changes in BDNF levels, and support BDNF enhancement as a potential preventative approach to target CRCI with therapeutics that are FDA approved and/or in clinical study for other indications.


Subject(s)
Brain-Derived Neurotrophic Factor , Cisplatin , Rats , Animals , Female , Cisplatin/toxicity , Brain-Derived Neurotrophic Factor/metabolism , Rats, Sprague-Dawley , Down-Regulation , Quality of Life , Riluzole/pharmacology , Hippocampus/metabolism , Disks Large Homolog 4 Protein
6.
bioRxiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-37131786

ABSTRACT

Malignant astrocytomas are aggressive glioma tumors characterized by extensive hypoxia-induced, mito-chondria-dependent changes such as altered respiration, increased chymotrypsin-like (CT-L) proteasome activity, decreased apoptosis, drug resistance, stemness and increased invasiveness. Mitochondrial Lon Peptidase I (LonP1) overexpression and increased CT-L proteasome inhibitors activity are the biomarkers of aggressive high grade glioma phenotype, poor prognosis and found to be associated with recurrence and poor patient survival, and drugs targeting either LonP1 or the CT-L activity have anti-glioma activity in pre-clinical models. We here for the first time introduced and evaluated a novel small molecule, BT317, derived from coumarinic compound 4 (CC4) using structure-activity modeling which we found to inhibit both LonP1 and CT-L proteasome activity. Using gain-of-function and loss-of-function genetic models, we dis-covered that BT317 is more effective than the individual LonP1 or CT-L inhibition in increasing reactive oxy-gen species (ROS) generation and inducing apoptosis in high-grade astrocytoma lines. In vitro, BT317 had activity as a single agent but, more importantly, enhanced synergy with the standard of care commonly used chemotherapeutic temozolomide (TMZ). In orthotopic xenograft, patient derived glioma models, BT317 was able to cross the blood-brain barrier, to show selective activity at the tumor site and to demonstrate therapeutic efficacy both as a single agent and in combination with TMZ. BT317 defines an emerging class of dual LonP1, and CT-L proteasome inhibitors exhibited promising anti-tumor activity and could be a promising candidate for clinical translation in the space of malignant astrocytoma therapeutics.

7.
N Engl J Med ; 389(2): 118-126, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37437144

ABSTRACT

BACKGROUND: Craniopharyngiomas, primary brain tumors of the pituitary-hypothalamic axis, can cause clinically significant sequelae. Treatment with the use of surgery, radiation, or both is often associated with substantial morbidity related to vision loss, neuroendocrine dysfunction, and memory loss. Genotyping has shown that more than 90% of papillary craniopharyngiomas carry BRAF V600E mutations, but data are lacking with regard to the safety and efficacy of BRAF-MEK inhibition in patients with papillary craniopharyngiomas who have not undergone previous radiation therapy. METHODS: Eligible patients who had papillary craniopharyngiomas that tested positive for BRAF mutations, had not undergone radiation therapy previously, and had measurable disease received the BRAF-MEK inhibitor combination vemurafenib-cobimetinib in 28-day cycles. The primary end point of this single-group, phase 2 study was objective response at 4 months as determined with the use of centrally determined volumetric data. RESULTS: Of the 16 patients in the study, 15 (94%; 95% confidence interval [CI], 70 to 100) had a durable objective partial response or better to therapy. The median reduction in the volume of the tumor was 91% (range, 68 to 99). The median follow-up was 22 months (95% CI, 19 to 30) and the median number of treatment cycles was 8. Progression-free survival was 87% (95% CI, 57 to 98) at 12 months and 58% (95% CI, 10 to 89) at 24 months. Three patients had disease progression during follow-up after therapy had been discontinued; none have died. The sole patient who did not have a response stopped treatment after 8 days owing to toxic effects. Grade 3 adverse events that were at least possibly related to treatment occurred in 12 patients, including rash in 6 patients. In 2 patients, grade 4 adverse events (hyperglycemia in 1 patient and increased creatine kinase levels in 1 patient) were reported; 3 patients discontinued treatment owing to adverse events. CONCLUSIONS: In this small, single-group study involving patients with papillary craniopharyngiomas, 15 of 16 patients had a partial response or better to the BRAF-MEK inhibitor combination vemurafenib-cobimetinib. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT03224767.).


Subject(s)
Antineoplastic Agents , Craniopharyngioma , Pituitary Neoplasms , Humans , Craniopharyngioma/drug therapy , Craniopharyngioma/genetics , Disease Progression , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/genetics , Pituitary Neoplasms/drug therapy , Pituitary Neoplasms/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Vemurafenib/adverse effects , Vemurafenib/therapeutic use , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Remission Induction
8.
bioRxiv ; 2023 May 17.
Article in English | MEDLINE | ID: mdl-37293048

ABSTRACT

Cancer-related cognitive impairments (CRCI) are debilitating consequences of cancer treatment with platinum agents (e.g., cisplatin) that greatly alter cancer survivors' health-related quality of life. Brain-derived neurotrophic factor (BDNF) plays an essential role in neurogenesis, learning, and memory, and the reduction of BDNF is associated with the development of cognitive impairment in various neurological disorders, including CRCI. Our previous CRCI rodent studies have shown that cisplatin reduces hippocampal neurogenesis and BDNF expression and increases hippocampal apoptosis, which is associated with cognitive impairments. Few studies have reported on the effects of chemotherapy and medical stress on serum BDNF levels and cognition in middle-aged female rat models. The present study aimed to compare the effects of medical stress and cisplatin on serum BDNF levels and cognitive performance in 9-month-old female Sprague Dawley rats to age-matched controls. Serum BDNF levels were collected longitudinally during cisplatin treatment, and cognitive function was assessed by novel object recognition (NOR) 14 weeks post-cisplatin initiation. Terminal BDNF levels were collected ten weeks after cisplatin completion. We also screened three BDNF-augmenting compounds, riluzole, ampakine CX546, and CX1739, for their neuroprotective effects on hippocampal neurons, in vitro . We assessed dendritic arborization by Sholl analysis and dendritic spine density by quantifying postsynaptic density-95 (PSD95) puncta. Cisplatin and exposure to medical stress reduced serum BDNF levels and impaired object discrimination in NOR compared to age-matched controls. Pharmacological BDNF augmentation protected neurons against cisplatin-induced reductions in dendritic branching and PSD95. Ampakines (CX546 and CX1739) but not riluzole altered the antitumor efficacy of cisplatin in two human ovarian cancer cell lines, OVCAR8 and SKOV3.ip1, in vitro. In conclusion, we established the first middle-aged rat model of cisplatin-induced CRCI, assessing the contribution of medical stress and longitudinal changes in BDNF levels with cognitive function. We conducted an in vitro screening of BDNF-enhancing agents to evaluate their potential neuroprotective effects against cisplatin-induced neurotoxicity and their effect on ovarian cancer cell viability.

9.
Bioorg Med Chem Lett ; 91: 129330, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37201660

ABSTRACT

In continuation of our previous efforts for the development of potent small molecules against brain cancer, herein we synthesized seventeen new compounds and tested their anti-gliomapotential against established glioblastoma cell lines, namely, D54MG, U251, and LN-229 as well as patient derived cell lines (DB70 and DB93). Among them, the carboxamide derivatives, BT-851 and BT-892 were found to be the most active leads in comparison to our established hit compound BT#9.The SAR studies of our hit BT#9 compound resulted in the development of two new lead compounds by hit to lead strategy. The detailed biological studies are currently underway. The active compounds could possibly act as template for the future development of newer anti-glioma agents.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/drug therapy , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation
10.
bioRxiv ; 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37131765

ABSTRACT

Malignant astroctyoma and glioblastoma are diffuse CNS tumors that have markedly similar features, including microvascular proliferation and necrosis, and the latter presents higher grade and poorer survival. The Isocitrate dehydrogenase 1/2 (IDH) mutation further predicts improved survival and is present in oligodendroglioma and astrocytoma. The latter are more prevalent in younger populations with a median age of 37 years at diagnosis as compared to glioblastoma with a median age of 641,2. These tumors frequently have co-occurring ATRX and/or TP53 mutations (Brat et al., 2021). The IDH mutation is known to cause dysregulation of the hypoxia response broadly in CNS tumors and subsequent reduction in both tumor growth and treatment resistance. The frequency of tumor recurrence is high for diffuse CNS tumors. Understanding the mechanism and potential molecular targets enhancing treatment resistance and local invasion in IDH mutant diffuse glioma is necessary for developing new treatment strategies for better tumor control and improving overall survival. Recent evidence highlights the importance of local foci in IDH mutant glioma with an accelerated stress response as responsible for recurrence in these tumors. Here, we demonstrate that LonP1 drives NRF2 and subsequent proneural mesenchymal transition interdependent with the IDH mutation in response to stress and other tumor microenvironment cues. Our findings provide further evidence that targeting LonP1 may be a crucial strategy for improving the standard-of-care treatment in IDH mutant diffuse astrocytoma.

11.
Nature ; 615(7953): 687-696, 2023 03.
Article in English | MEDLINE | ID: mdl-36356599

ABSTRACT

T cell receptors (TCRs) enable T cells to specifically recognize mutations in cancer cells1-3. Here we developed a clinical-grade approach based on CRISPR-Cas9 non-viral precision genome-editing to simultaneously knockout the two endogenous TCR genes TRAC (which encodes TCRα) and TRBC (which encodes TCRß). We also inserted into the TRAC locus two chains of a neoantigen-specific TCR (neoTCR) isolated from circulating T cells of patients. The neoTCRs were isolated using a personalized library of soluble predicted neoantigen-HLA capture reagents. Sixteen patients with different refractory solid cancers received up to three distinct neoTCR transgenic cell products. Each product expressed a patient-specific neoTCR and was administered in a cell-dose-escalation, first-in-human phase I clinical trial ( NCT03970382 ). One patient had grade 1 cytokine release syndrome and one patient had grade 3 encephalitis. All participants had the expected side effects from the lymphodepleting chemotherapy. Five patients had stable disease and the other eleven had disease progression as the best response on the therapy. neoTCR transgenic T cells were detected in tumour biopsy samples after infusion at frequencies higher than the native TCRs before infusion. This study demonstrates the feasibility of isolating and cloning multiple TCRs that recognize mutational neoantigens. Moreover, simultaneous knockout of the endogenous TCR and knock-in of neoTCRs using single-step, non-viral precision genome-editing are achieved. The manufacture of neoTCR engineered T cells at clinical grade, the safety of infusing up to three gene-edited neoTCR T cell products and the ability of the transgenic T cells to traffic to the tumours of patients are also demonstrated.


Subject(s)
Cell- and Tissue-Based Therapy , Gene Editing , Neoplasms , Precision Medicine , Receptors, Antigen, T-Cell , T-Lymphocytes , Transgenes , Humans , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Biopsy , Cell- and Tissue-Based Therapy/adverse effects , Cell- and Tissue-Based Therapy/methods , Cytokine Release Syndrome/complications , Disease Progression , Encephalitis/complications , Gene Knock-In Techniques , Gene Knockout Techniques , Genes, T-Cell Receptor alpha , Genes, T-Cell Receptor beta , Mutation , Neoplasms/complications , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Patient Safety , Precision Medicine/adverse effects , Precision Medicine/methods , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transgenes/genetics , HLA Antigens/immunology , CRISPR-Cas Systems
12.
JAMA Oncol ; 9(1): 112-121, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36394838

ABSTRACT

Importance: Glioblastoma is the most lethal primary brain cancer. Clinical outcomes for glioblastoma remain poor, and new treatments are needed. Objective: To investigate whether adding autologous tumor lysate-loaded dendritic cell vaccine (DCVax-L) to standard of care (SOC) extends survival among patients with glioblastoma. Design, Setting, and Participants: This phase 3, prospective, externally controlled nonrandomized trial compared overall survival (OS) in patients with newly diagnosed glioblastoma (nGBM) and recurrent glioblastoma (rGBM) treated with DCVax-L plus SOC vs contemporaneous matched external control patients treated with SOC. This international, multicenter trial was conducted at 94 sites in 4 countries from August 2007 to November 2015. Data analysis was conducted from October 2020 to September 2021. Interventions: The active treatment was DCVax-L plus SOC temozolomide. The nGBM external control patients received SOC temozolomide and placebo; the rGBM external controls received approved rGBM therapies. Main Outcomes and Measures: The primary and secondary end points compared overall survival (OS) in nGBM and rGBM, respectively, with contemporaneous matched external control populations from the control groups of other formal randomized clinical trials. Results: A total of 331 patients were enrolled in the trial, with 232 randomized to the DCVax-L group and 99 to the placebo group. Median OS (mOS) for the 232 patients with nGBM receiving DCVax-L was 19.3 (95% CI, 17.5-21.3) months from randomization (22.4 months from surgery) vs 16.5 (95% CI, 16.0-17.5) months from randomization in control patients (HR = 0.80; 98% CI, 0.00-0.94; P = .002). Survival at 48 months from randomization was 15.7% vs 9.9%, and at 60 months, it was 13.0% vs 5.7%. For 64 patients with rGBM receiving DCVax-L, mOS was 13.2 (95% CI, 9.7-16.8) months from relapse vs 7.8 (95% CI, 7.2-8.2) months among control patients (HR, 0.58; 98% CI, 0.00-0.76; P < .001). Survival at 24 and 30 months after recurrence was 20.7% vs 9.6% and 11.1% vs 5.1%, respectively. Survival was improved in patients with nGBM with methylated MGMT receiving DCVax-L compared with external control patients (HR, 0.74; 98% CI, 0.55-1.00; P = .03). Conclusions and Relevance: In this study, adding DCVax-L to SOC resulted in clinically meaningful and statistically significant extension of survival for patients with both nGBM and rGBM compared with contemporaneous, matched external controls who received SOC alone. Trial Registration: ClinicalTrials.gov Identifier: NCT00045968.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Temozolomide/therapeutic use , Prospective Studies , Brain Neoplasms/pathology , Recurrence , Dendritic Cells/pathology , Vaccination
13.
J Exp Clin Cancer Res ; 41(1): 344, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36517865

ABSTRACT

BACKGROUND: Vaccine immunotherapy may improve survival in Glioblastoma (GBM). A multicenter phase II trial was designed to determine: (1) the success rate of manufacturing the Aivita GBM vaccine (AV-GBM-1), (2) Adverse Events (AE) associated with AV-GBM-1 administration, and (3) survival. METHODS: Fresh suspected glioblastoma tissue was collected during surgery, and patients with pathology-confirmed GBM enrolled before starting concurrent Radiation Therapy and Temozolomide (RT/TMZ) with Intent to Treat (ITT) after recovery from RT/TMZ. AV-GBM-1 was made by incubating autologous dendritic cells with a lysate of irradiated autologous Tumor-Initiating Cells (TICs). Eligible patients were adults (18 to 70 years old) with a Karnofsky Performance Score (KPS) of 70 or greater, a successful TIC culture, and sufficient monocytes collected. A cryopreserved AV-GBM-1 dose was thawed and admixed with 500 µg of Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) before every subcutaneous (s.c.) administration. RESULTS: Success rates were 97% for both TIC production and monocyte collection. AV-GBM-1 was manufactured for 63/63 patients; 60 enrolled per ITT; 57 started AV-GBM-1. The most common AEs attributed to AV-GBM-1 were local injection site reactions (16%) and flu-like symptoms (10%). Treatment-emergent AEs included seizures (33%), headache (37%), and focal neurologic symptoms (28%). One patient discontinued AV-GBM-1 because of seizures. Median Progression-Free Survival (mPFS) and median Overall Survival (mOS) from ITT enrollment were 10.4 and 16.0 months, respectively. 2-year Overall Survival (OS) is 27%. CONCLUSIONS: AV-GBM-1 was reliably manufactured. Treatment was well-tolerated, but there were numerous treatment-emergent central nervous system AEs. mPFS was longer than historical benchmarks, though no mOS improvement was noted. TRIAL REGISTRATION: NCT, NCT03400917 , Registered 10 January 2018.


Subject(s)
Brain Neoplasms , Glioblastoma , Vaccines , Adolescent , Adult , Aged , Humans , Middle Aged , Young Adult , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Dendritic Cells , Glioblastoma/drug therapy , Seizures/drug therapy , Temozolomide , Treatment Outcome , Vaccines/adverse effects
14.
Contemp Clin Trials ; 122: 106902, 2022 11.
Article in English | MEDLINE | ID: mdl-36049674

ABSTRACT

Asthma self-management can improve symptom control, but adherence to established self-management behaviors is often poor. With adult asthma uncontrolled in over 60% of U.S. cases, there is a need for scalable, cost-effective tools to improve asthma outcomes. Here we describe a protocol for the Asthma Digital Study, a 24-month, decentralized, pragmatic, open-label, randomized controlled trial investigating the impact of a digital asthma self-management (DASM) program on asthma outcomes in adults. The program leverages consumer-grade devices with a smartphone app to provide "smart nudges," symptom logging, trigger tracking, and other features. Participants are recruited (target N = 900) from throughout the U.S., and randomized to a DASM or control arm (1:1). Co-primary outcomes at one year are a) asthma-associated costs for acute care and b) change from baseline in Asthma Control Test™ scores. Findings may inform decisions around adoption of digital tools for asthma self-management. Trial registration:clinicaltrials.gov identifier: NCT04609644. Registered: Oct 30, 2020.


Subject(s)
Asthma , Mobile Applications , Self-Management , Adult , Humans , Asthma/therapy , Critical Care , Monitoring, Physiologic , Randomized Controlled Trials as Topic , Self-Management/methods , Pragmatic Clinical Trials as Topic
15.
Neurosurg Rev ; 45(5): 3067-3081, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35984552

ABSTRACT

Treatment-refractory meningiomas have a dismal prognosis and limited treatment options. Meningiomas express high-densities of somatostatin receptors (SSTR), thus potentially susceptible to antitumorigenic effects of somatostatin analogues (SSA). Evidence for SSA in meningiomas is scarce, and it is unclear if published literature would either (1) support wider use of SSA, if (2) more evidence is desirable, or if (3) available evidence is sufficient to discard SSA. We addressed the need for more evidence with a systematic review and meta-analysis. We performed an individual patient data (IPD) meta-analysis. Main outcomes were toxicity, best radiological response, progression-free survival, and overall survival. We applied multivariable logistic regression models to estimate the effect of SSA on the probability of obtaining radiological disease control. The predictive performance was evaluated using area under the curve and Brier scores. We included 16 studies and compiled IPD from 8/9 of all previous cohorts. Quality of evidence was overall ranked "very low." Stable disease was reported in 58% of patients as best radiological response. Per 100 mg increase in total SSA dosage, the odds ratios for obtaining radiological disease control was 1.42 (1.11 to 1.81, P = 0.005) and 1.44 (1.00 to 2.08, P = 0.05) for patients treated with SSA as monodrug therapy vs SSA in combination with everolimus, respectively. Low quality of evidence impeded exact quantification of treatment efficacy, and the association between response and treatment may represent reverse causality. Yet, the SSA treatment was well tolerated, and beneficial effect cannot be disqualified. A prospective trial without bias from inconsistent study designs is warranted to assess SSA therapy for well-defined meningioma subgroups.


Subject(s)
Meningeal Neoplasms , Meningioma , Everolimus/therapeutic use , Humans , Meningeal Neoplasms/drug therapy , Meningioma/drug therapy , Prospective Studies , Receptors, Somatostatin/therapeutic use , Somatostatin/therapeutic use
16.
Front Oncol ; 12: 934638, 2022.
Article in English | MEDLINE | ID: mdl-35837107

ABSTRACT

Background: Glioblastoma (GBM) is the most common primary, malignant brain tumor in adults and has a poor prognosis. The median progression-free survival (mPFS) of newly diagnosed GBM is approximately 6 months. The recurrence rate approaches 100%, and the case-fatality ratio approaches one. Half the patients die within 8 months of recurrence, and 5-year survival is less than 10%. Advances in treatment options are urgently needed. We report on the efficacy and safety of a therapeutic vaccine (SITOIGANAP: Epitopoietic Research Corporation) administered to 21 patients with recurrent GBM (rGBM) under a Right-to-Try/Expanded Access program. SITOIGANAP is composed of both autologous and allogeneic tumor cells and lysates. Methods: Twenty-one patients with rGBM received SITOIGANAP on 28-day cycles in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), cyclophosphamide, bevacizumab, and an anti-programmed cell death protein-1 (anti-PD-1) monoclonal antibody (either nivolumab or pembrolizumab). Results: The mPFS was 9.14 months, and the median overall survival (mOS) was 19.63 months from protocol entry. Currently, 14 patients (67%) are at least 6 months past their first SITOIGANAP cycle; 10 patients (48%) have received at least six cycles and have a mOS of 30.64 months and 1-year survival of 90%. The enrollment and end-of-study CD3+/CD4+ T-lymphocyte counts strongly correlate with OS. Conclusions: The addition of SITOIGANAP/GM-CSF/cyclophosphamide to bevacizumab and an anti-PD-1 monoclonal antibody resulted in a significant survival benefit compared to historic control values in rGBM with minimal toxicity compared to current therapy.

17.
Neurol Int ; 14(3): 574-580, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35893281

ABSTRACT

Primary central nervous system lymphoma (PCNSL) is a rare and aggressive disease that originates from lymphocytes and develops in the central nervous system. There is no standard consolidation/maintenance therapy for PCNSL. While there exists a variety of options, the high chance of inferior outcomes for elderly patients and the risk of neurotoxicity requires exploration of alternative options for consolidation/maintenance therapy for PCNSL in the elderly population with CNS lymphoma. We treated one 77-year-old patient with single agent ibrutinib, a Bruton's tyrosine kinase inhibitor that crosses the blood-brain-barrier, as consolidation/maintenance therapy after induction therapy with high-dose methotrexate (HD-MTX) and rituximab plus temozolomide. This treatment resulted in good tolerance, further resolution of a small residue lymphoma, and sustained remission. The patient has completed one year of consolidation/maintenance therapy and is currently under clinical and imaging surveillance. She has survived 27 months without recurrence since diagnosis. This case shows the potential effectiveness of single agent ibrutinib as consolidation/maintenance therapy for PCNSL after induction therapy. More cases are needed to confirm the findings.

18.
Cell Rep ; 40(1): 111022, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35753310

ABSTRACT

The COVID-19 pandemic has triggered the first widespread vaccination campaign against a coronavirus. Many vaccinated subjects are previously naive to SARS-CoV-2; however, almost all have previously encountered other coronaviruses (CoVs), and the role of this immunity in shaping the vaccine response remains uncharacterized. Here, we use longitudinal samples and highly multiplexed serology to identify mRNA-1273 vaccine-induced antibody responses against a range of CoV Spike epitopes, in both phylogenetically conserved and non-conserved regions. Whereas reactivity to SARS-CoV-2 epitopes shows a delayed but progressive increase following vaccination, we observe distinct kinetics for the endemic CoV homologs at conserved sites in Spike S2: these become detectable sooner and decay at later time points. Using homolog-specific antibody depletion and alanine-substitution experiments, we show that these distinct trajectories reflect an evolving cross-reactive response that can distinguish rare, polymorphic residues within these epitopes. Our results reveal mechanisms for the formation of antibodies with broad reactivity against CoVs.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Epitopes , Humans , Pandemics , SARS-CoV-2 , Vaccination
19.
Int J Mol Sci ; 23(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35743133

ABSTRACT

The aim of this study was to determine the role of retrograde signaling (mitochondria to nucleus) in MCF7 breast cancer cells. Therefore, in the present study, MCF7-H and MCF7-J cybrids were produced using the mitochondria from the same H and J individuals that were already used in our non-diseased retinal pigment epithelium (ARPE19) cybrids. MCF7 cybrids were treated with cisplatin and analyzed for cell viability, mitochondrial membrane potential, ROS, and expression levels of genes associated with the cGAS-STING and cancer-related pathways. Results showed that unlike the ARPE19-H and ARPE19-J cybrids, the untreated MCF7-H and MCF7-J cybrids had similar levels of ATP, lactate, and OCR: ECAR ratios. After cisplatin treatment, MCF7-H and MCF7-J cybrids showed similar (a) decreases in cell viability and ROS levels; (b) upregulation of ABCC1, BRCA1 and CDKN1A/P21; and (c) downregulation of EGFR. Cisplatin-treated ARPE19-H and ARPE19-J cybrids showed increased expression of six cGAS-STING pathway genes, while two were increased for MCF7-J cybrids. In summary, the ARPE19-H and ARPE19-J cybrids behave differentially from each other with or without cisplatin. In contrast, the MCF7-H and MCF7-J cybrids had identical metabolic/bioenergetic profiles and cisplatin responses. Our findings suggest that cancer cell nuclei might have a diminished ability to respond to the modulating signaling of the mtDNA that occurs via the cGAS-STING pathway.


Subject(s)
Breast Neoplasms , DNA, Mitochondrial , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cisplatin/metabolism , Cisplatin/pharmacology , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Female , Humans , Mitochondria/genetics , Mitochondria/metabolism , Nucleotidyltransferases/metabolism , Reactive Oxygen Species/metabolism
20.
J Adv Pract Oncol ; 13(8): 775-789, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36727021

ABSTRACT

Background and Purpose: Clinical guidelines suggest that prophylactic antiepileptic drugs (AEDs) should be given to newly diagnosed seizure-naive brain tumor patients for up to 1 week after craniotomy. Yet, data suggest that prophylactic AEDs are used up to 12 months after surgery. A quality improvement project was implemented to improve adherence to evidence-based prophylactic AED guidelines. Methods: A quasi-experimental, pre- and post-test intervention design was used to assess the effect of a multiphase intervention on guideline adherence and prophylactic anticonvulsant prescription rates. The 16-week intervention consisted of provider education sessions, provider alerts, documentation templates, and a weekly audit and feedback. Participants included four providers and newly diagnosed seizure-naive brain tumor patients. Measures included guideline adherence rates and AED prescription rates extracted from chart review, and a provider attitude and knowledge survey. Analyses included descriptive statistics, Wilcoxon signed-rank tests, and Chi-square tests. Results: Guideline adherence increased significantly (p < .01) from 4 months before implementation (15.8%) to 1 year before implementation (27.8%) and then to 93.3% after implementation. Provider knowledge showed clinically meaningful decreases in the likelihood to prescribe prophylactic AEDs (-.5 point) and increased understanding of prophylactic AED side effects (+0.5 point), although these were not statistically significant (p = .083). Finally, prophylactic AED prescription rates decreased by 2.2% (p = .119) compared with 4 months and 1 year before implementation (2.6%; p = .072). Conclusion: This project highlights the important role of provider education, provider alerts, a documentation template, and audit and feedback in improving guideline adherence rate. Findings suggest that the combination intervention and weekly audit and feedback strategy can improve guideline adherence to prophylactic anticonvulsant use in seizure-naive newly diagnosed brain tumor patients. Implications: By following prophylactic AED guideline recommendations, clinicians can avoid the potential side effects of anticonvulsant-induced cognitive, behavioral, and psychiatric issues that can impair patients' quality of life.

SELECTION OF CITATIONS
SEARCH DETAIL