Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
Molecules ; 28(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36903491

ABSTRACT

Because of the global necessity to decrease CO2 emissions, biomass-based fuels have become an interesting option to explore; although, bio-oils need to be upgraded, for example, by catalytic hydrodeoxygenation (HDO), to reduce oxygen content. This reaction generally requires bifunctional catalysts with both metal and acid sites. For that purpose, Pt-Al2O3 and Ni-Al2O3 catalysts containing heteropolyacids (HPA) were prepared. HPAs were added by two different methods: the impregnation of a H3PW12O40 solution onto the support and a physical mixture of the support with Cs2.5H0.5PW12O40. The catalysts were characterized by powder X-ray diffraction, Infrared, UV-Vis, Raman, X-ray photoelectron spectroscopy and NH3-TPD experiments. The presence of H3PW12O40 was confirmed by Raman, UV-Vis and X-ray photoelectron spectroscopy, while the presence of Cs2.5H0.5PW12O40 was confirmed by all of the techniques. However, HPW was shown to strongly interact with the supports, especially in the case of Pt-Al2O3. These catalysts were tested in the HDO of guaiacol, at 300 °C, under H2 and at atmospheric pressure. Ni-based catalysts led to higher conversion and selectivity to deoxygenated compound values, such as benzene. This is attributed to both a higher metal and acidic contents of these catalysts. Among all tested catalysts, HPW/Ni-Al2O3 was shown to be the most promising, although it suffered a more severe deactivation with time-on-stream.

2.
Nanomaterials (Basel) ; 12(3)2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35159707

ABSTRACT

The transformation of biomass, a carbon resource presenting a huge potential to produce valuable chemicals, requires the search for sustainable catalytic routes. This work proposes the microwave-assisted oxidation of biomass -derived substrates, such as glycerol and the furfural derivatives 5-(hydroxymethyl)furfural (HMF) and 5-hydroxymethyl-2-furancarboxylic acid (HFCA), using the C-scorpionate dichloro-gold(III) complex [AuCl2(κ2-Tpm)]Cl (Tpm = HCpz3; pz = pyrazol-1-yl) as a catalyst, as prepared and supported on graphene, in solvent-free conditions. The unprecedented application of a mechanochemical procedure (in a planetary ball mill, in solid state) to synthesize a C-scorpionate complex, the [AuCl2(κ2-Tpm)]Cl, is disclosed. The immobilization of [AuCl2(κ2-Tpm)]Cl on graphene was performed using different methods, including some (e.g., microwave irradiation and liquid assisted grinding) for the first time. The structural properties and the performance of the prepared catalytic materials are presented and discussed.

3.
Data Brief ; 40: 107696, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34977290

ABSTRACT

The growing threat of emerging waterborne contaminants is a global concern, fuelled in part by the ineffectiveness of current remediation strategies. One of the most prominent remediation strategies is catalytic photodegradation, particularly with TiO2 nanoparticles (NPs), but its full utilization is hampered by using only UV radiation, which is scarce in sunlight. To fully benefit from the sunlight abundance, several efforts are focused on the tailoring of TiO2 to make it more active in visible (Vis) light. However, this target is yet to be met, sought for new developments. In a recent research paper entitled "Visible light-driven photodegradation of triclosan and antimicrobial activity against Legionella pneumophila with cobalt and nitrogen co-doped TiO2 anatase nanoparticles" [ 1 ], we investigated the co-doping potential of cobalt and nitrogen in TiO2 NPs for water decontamination, focusing on its application for the degradation of triclosan (TCS) under Vis LED light irradiation. Herein, the synthesis methodology for the preparation of doped TiO2 with nitrogen is described in detail, along with complementary data on the characterisation of all previously synthesised photocatalysts in the form of specific surface area determination (B.E.T. method) based on the obtained physisorption isotherms, X-ray photoelectron spectroscopy (XPS), and the automatic determination of bandgap energy through the diffuse reflectance spectra (DRS) analysis by using the GapExtractor© software. This dataset article also includes optimised photocatalytic reaction conditions, specifically conducted under monochromatic LED light irradiation. The employed LED irradiation conditions can support photocatalytic research in the field, since LED systems are costless and have a long-life span compared to most conventional UV-Vis systems. In addition, raw UV-Vis spectra and high-performance liquid chromatography (HPLC) chromatograms for monitoring the TCS degradation reaction are also included, as are powder X-ray diffractograms (XRD) of recycled doped-TiO2 photocatalysts, confirming the renewable efficiency of the synthesised photocatalysts to pursue green chemistry principles.

4.
J Mech Behav Biomed Mater ; 108: 103794, 2020 08.
Article in English | MEDLINE | ID: mdl-32469718

ABSTRACT

The presence of a biomimetic HAP coating on titanium surface, which reduces the structural stiffness, is essential to improve implants biocompatibility and osteointegration. In this study, new citrate-HAP (cHAP) coatings were produced by a simple hydrothermal method on pure titanium (Ti) surface, without requiring any additional pretreatment on this metal surface. The formed cHAP coatings consisting of nanorod-like hydroxyapatite particles, conferred nanoroughness and wettability able to endow improved biological responses. Indeed, the presence of citrate species in the precipitate medium seems to be responsible for controlling the morphology of the new coatings. The presence of citrate groups on the surface of cHAP coatings, identified by chemical composition analysis, due to their implication in bone metabolism can additionally bring an add-value for bone implant applications. From a mechanical point of view, the Finite Element algorithm showing that cHAP coatings tend to decrease the mechanical stress at pure Ti, further favors these new coatings applicability. Overall, the simple and expedite strategy used to developed new biomimetic coatings of citrate-HAP resulted in improved physicochemical, morphological and mechanical properties of Ti, which can endeavor improved implantable materials in bone healing surgical procedures.


Subject(s)
Durapatite , Titanium , Citric Acid , Coated Materials, Biocompatible , Prostheses and Implants , Surface Properties
5.
Antibiotics (Basel) ; 8(3)2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31509986

ABSTRACT

Hydroxide [Ag(OH)L] (L = IVL, VL, VIL, VIIL), oxide [{AgL}2}(µ-O)] (L = IL, IIL, IIIL, VL, VIL) or chloride [AgIIL]Cl, [Ag(VIL)2]Cl complexes were obtained from reactions of mono- or bicamphorimine derivatives with Ag(OAc) or AgCl. The new complexes were characterized by spectroscopic (NMR, FTIR) and elemental analysis. X-ray photoelectron spectroscopy (XPS), ESI mass spectra and conductivity measurements were undertaken to corroborate formulations. The antimicrobial activity of complexes and some ligands were evaluated towards Candida albicans and Candida glabrata, and strains of the bacterial species Escherichia coli, Burkholderia contaminans, Pseudomonas aeruginosa and Staphylococcus aureus based on the Minimum Inhibitory Concentrations (MIC). Complexes displayed very high activity against the Candida species studied with the lowest MIC values (3.9 µg/mL) being observed for complexes 9 and 10A against C. albicans. A significant feature of these redesigned complexes is their ability to sensitize C. albicans, a trait that was not found for the previously investigated [Ag(NO3)L] complexes. The MIC values of the complexes towards bacteria were in the range of those of [Ag(NO3)L] and well above those of the precursors Ag(OAc) or AgCl. The activity of the complexes towards normal fibroblasts V79 was evaluated by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. Results showed that the complexes have a significant cytotoxicity.

6.
ChemMedChem ; 14(6): 699-711, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30707784

ABSTRACT

A highly hydrophilic carbon nanomaterial was generated by using an electrochemical approach, and its structure, chemical composition, redox properties, antioxidant activity and effects on cells were characterised. It was found that the nanomaterial possesses a structure dominated by sp2 carbon atoms in a non-ordered carbon network formed by small clusters (<2 nm) of a carbonaceous material. This material has an outstanding capability for donating electrons and an unusual ability to bind metal cations. Antioxidant activity assays showed that it displays a high scavenging activity against both 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals, and a concentration-dependent ability to protect mitochondrial lipids and intracellular thiol groups from oxidation promoted by external oxidising agents. Cell-based assays also revealed that the nanomaterial has the ability to protect neuronal cells against oxidative damage and toxicity promoted by tert-butyl hydroperoxide and amyloid-ß1-42 peptide. These results, combined with the attractive methodology for generating this hydrophilic carbon-based nanomaterial, make this study the first step in addressing the therapeutic application of this new material.


Subject(s)
Carbon/chemistry , Hydrophobic and Hydrophilic Interactions , Nanostructures/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Spectrum Analysis/methods
7.
J Inorg Biochem ; 188: 88-95, 2018 11.
Article in English | MEDLINE | ID: mdl-30125832

ABSTRACT

Five silver camphor complexes of formulae [Ag2(L)(L')2] (1,3,5) or [Ag(L)2(L')] (2,4) were synthesized from silver nitrate and the suitable camphor carboxylate (L1) or camphor carboxamides (L3, L4). The complexes were characterized by elemental analysis and spectroscopic techniques (NMR, FTIR, XPS). Computational calculations support coordination of the carboxylate group to silver, in the case of complex 2 and combined mixed keto/carboxylate in the case of complex 1. The stability of the complexes highly relies on the tetrahedral geometry of the lithium ion that binds to four oxygen atoms of the camphor carboxylate ligands. The redox properties of complexes 1 and 4 studied by cyclic voltammetry confirm the facile reduction of the metal sites that depending on the experimental conditions may lead to formation of silver nanoparticles as confirmed by XPS and TEM. Complexes 1, 2 and 4 were tested for cytotoxic activities against A2780 (IC50, 11-14 µM) and A2780 cisplatin resistant (A2780cisR) (IC50, 4-7 µM) cells using the MTT assay. The result showed that the complexes have anticancer activity higher than cisplatin. Complex 1 was also probed for cytotoxicity against the non-tumoral human embryonic kidney (HEK 293, IC50, 62.2 ±â€¯16 µM) cells showing low toxicity in agreement with the silver camphor carboxylate complexes having a considerable selectivity for the ovarian cancer cells A2780 and cisplatin resistant A2780cisR which is a key point under pharmacological uses.


Subject(s)
Camphor , Coordination Complexes , Cytotoxins , Ovarian Neoplasms/drug therapy , Silver , Camphor/analogs & derivatives , Camphor/chemistry , Camphor/pharmacology , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Cytotoxins/chemical synthesis , Cytotoxins/chemistry , Cytotoxins/pharmacology , Drug Screening Assays, Antitumor , Female , HEK293 Cells , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Silver/chemistry , Silver/pharmacology
8.
Dalton Trans ; 47(25): 8193-8198, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29872828

ABSTRACT

The effect of microwave and mechanochemical ball milling energy inputs was studied for the peroxidative oxidation (with aqueous H2O2) of cyclohexane to cyclohexanol and cyclohexanone, over CoCl2 and/or V2O5 dispersed (µm scale) catalysts. A maximum total yield of cyclohexanol and cyclohexanone of 43% after 1 h of reaction at 30 °C, in acetonitrile and under microwave irradiation (5 W), was achieved over the CoCl2-V2O5 (3 : 1) catalyst prepared by ball milling. Cyclohexanol is the main final product with a selectivity of up to 93% over cyclohexanone. Conducting the oxidation reaction under microwave irradiation under the same conditions but without any mechanochemical treatment of the catalyst prior to use resulted in a lower total yield of 30% with a lower selectivity (69%) towards cyclohexanol over cyclohexanone. The sole application of mechanochemical treatment for the catalyst preparation and the catalytic oxidation of cyclohexane allowed to reach yields of 29% after 1 h of reaction, at room temperature, without microwave irradiation and any additive and in the absence of any organic solvent. Ball milling is shown to provide a convenient, solvent-free method to disperse these solid catalysts and to promote the above cyclohexane oxidation, although, in the latter case, not so effectively as microwave irradiation.

9.
J Colloid Interface Sci ; 507: 83-94, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28780338

ABSTRACT

In the present work, a simple, reliable and cost-effective approach to functionalize cotton fabrics with Ag-TiO2 nanoparticles strongly bound to the fibres and with visible-light-responsive photo-activity is presented. The hybrid cotton-Ag-TiO2 fabrics were characterized by Raman, AFM, FE-SEM, TGA, XPS GSDR, and LIL to confirm the generation of metallic Ag nanoparticles and crystalline TiO2 and investigate how the concentration of Ag and TiO2 precursors affected the morphology and the luminescence properties of the nanostructured layer grafted on the cotton fibres. The photocatalytic activity of the cotton-Ag-TiO2 hybrid systems was evaluated by the discoloration of Remazol Brilliant Blue R in water under a xenon lamp irradiation (sunlight simulator) equipped with selective filters. The extended photocatalytic activity to the visible is here explained by a synergistic effect of both the excitation of the Ag NPs plasmon resonance by visible light and a delayed electron-hole recombination rate caused by Ag NPs, as it can be observed by UV absorption.

10.
Phys Chem Chem Phys ; 19(17): 10898-10904, 2017 May 03.
Article in English | MEDLINE | ID: mdl-28401238

ABSTRACT

Resistive switching in metal-insulator-metal nanosctructures is being intensively studied for nonvolatile memory applications. Here, we report unipolar resistive switching in Pt/MgO/Ta/Ru structures, with a 30 nm oxide barrier. A forming process was needed to initiate the resistive switching, which was then observed for all Set and Reset voltage polarity combinations. We studied the influence of the voltage polarity on the variability of the Set/Reset voltages and ON/OFF resistances and revealed the importance of a thin TaOx layer working as an oxygen revervoir for resistive switching. The mechanism behind this phenomenon can be understood in terms of conductive filaments formation/rupture with a contribution from Joule heating. Resistance change is thus caused by a voltage-driven oxygen vacancy motion in the MgO layer and a filament model was proposed for each polarity mode. A OFF/ON resistance ratio of at least 2 orders of magnitude was obtained with resistive states stable up to 104 s. Our results open the prospect to improve switching performance in other resistive switching systems, by proving a better understanding of the differences between operation modes.

11.
J Phys Chem B ; 119(27): 8544-52, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26076391

ABSTRACT

The adsorption of intact liposomes onto solid supports is a fundamental issue when preparing systems with encapsulated biological molecules. In this work, the adsorption kinetic of 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) liposomes onto cushions prepared from commom polyelectrolytes by the layer-by-layer technique was investigated with the main objective of finding the surface conditions leading to the adsorption of intact liposomes. For this purpose, different cushion surface roughnesses were obtained by changing the number of cushion bilayers. The adsorbed amount per unit area was measured through quartz crystal microbalance, surface morphology was characterized by atomic force microscopy, and the surface composition was assessed by X-ray photoelectron spectroscopy. The results show that (1) the amount of adsorbed lipids depends on the number of cushion bilayers, (2) the cushions are uniformly covered by the adsorbed lipids, and (3) the surface morphology of polymer cushions tunes liposome rupture and its adsorption kinetics. The fraction of ruptured liposomes, calculated from the measured amount of adsorbed lipids, is a function of surface roughness together with other surface morphology parameters, namely the dominating in-plane spatial feature size, the fractal dimension, and other textural features as well as amplitude and hybrid parameters.


Subject(s)
Liposomes/chemistry , Phosphatidylglycerols/chemistry , Polymers/chemistry , Adsorption , Fractals , Gold Compounds/chemistry , Kinetics , Microscopy, Atomic Force , Models, Chemical , Molecular Structure , Photoelectron Spectroscopy , Quartz Crystal Microbalance Techniques , Surface Properties
12.
Dalton Trans ; 43(8): 3215-26, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24352227

ABSTRACT

Ordered copper integrated mesoporous silicate catalysts (CuMSC) have been synthesized by the utilization of the amphiphilic tri-block copolymer pluronic F127 as a structure directing agent (SDA) under acidic aqueous conditions. The mesophase of the materials was investigated using small-angle powder X-ray diffraction and transmission electron microscopic (TEM) image analysis. N2 adsorption-desorption studies show that the BET surface area of CuMSC (214-407 m(2) g(-1)) is lower than that of pure silica (611 m(2) g(-1)) and has smaller average pore dimensions (4.0-5.0 nm), both prepared following the same synthetic route. The reduction of pore size and surface area points to incorporation of copper within the silicate network. FEG-SEM results suggest that the materials have a plate-like morphology and are composed of very tiny nanoparticles. EDS surface chemical analysis was utilized for the detection of the distribution of Si, O and Cu in the matrix. The FT IR spectral study suggests the complete removal of the surfactants from the calcined materials and the presence of Si-O-Cu bonds for high nominal contents. X-ray photoelectron spectroscopy (XPS) and UV-vis reflectance spectra show the oxidation state of copper and coordination mode, respectively. These mesoporous materials display a good catalytic activity in the oxidation of cyclohexane to cyclohexanone and cyclohexanol in the presence of the green oxidant hydrogen peroxide. The maximum yield (cyclohexanone and cyclohexanol) was ca. 29% and the TON (turnover number) was 276 under optimal reaction conditions. The good catalytic activity could be attributed to the large surface area and the presence of a high number of active sites located at the surface of the material, as well as to its stability. The catalysts showed negligible loss of activity after five cycles.

13.
Sci Technol Adv Mater ; 14(4): 045009, 2013 Aug.
Article in English | MEDLINE | ID: mdl-27877602

ABSTRACT

We report the effect of a disperse carbon interlayer between the n-a-Si:H layer and an aluminium zinc oxide (AZO) back contact on the performance of amorphous silicon solar cells. Carbon was incorporated to the AZO film as revealed by x-ray photoelectron spectroscopy and energy-dispersive x-ray analysis. Solar cells fabricated on glass substrates using AZO in the back contact performed better when a disperse carbon interlayer was present in their structure. They exhibited an initial efficiency of 11%, open-circuit voltage Voc = 1.6 V, short-circuit current JSC = 11 mA cm-2 and a filling factor of 63%, that is, a 10% increase in the JSC and 20% increase in the efficiency compared to a standard solar cell.

14.
J Biomed Opt ; 17(12): 125005, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23208295

ABSTRACT

We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.


Subject(s)
Femur/surgery , Femur/ultrastructure , Laser Therapy/instrumentation , Laser Therapy/methods , Osteotomy/instrumentation , Osteotomy/methods , Animals , Cattle , Equipment Design , Equipment Failure Analysis , In Vitro Techniques , Treatment Outcome
15.
ACS Macro Lett ; 1(3): 356-360, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-35578501

ABSTRACT

Differently shaped polymeric matrices were efficiently coated with stimuli-responsive hydrogels for a wide range of applications using a new methodology. By combining plasma surface activation and polymerization in supercritical media at mild conditions, we report the direct smart coating of microcarriers and membranes in gram-scale quantities with a scalable, green, and low-cost approach.

16.
Inorg Chem ; 49(22): 10330-7, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20942409

ABSTRACT

The chemical reactivity, molecular structure, and surface characteristics of Cu(I) camphor hydrazone compounds indicate that exist a structural pathway for conversion of coordination polymers into dimers and vice versa. By X-ray diffraction analysis two polymorphic forms of the chain compound [{CuCl}(2)(Me(2)NNC(10)H(14)O)](n) were identified that essentially differ in the structural arrangement and geometry of the non-linear copper atom. The characterization of the dimer complexes [{Cu(Me(2)NNC(10)H(14)O)}(2)(µ-X)(2)] (X = Cl or Br) was also achieved by X-ray diffraction analysis showing the unusual arrangement of the camphor hydrazone ligands that occupy the same side of the molecule. Bond lengths and torsion angles show that one of the polymorphic forms is structurally close to the related dimer. The surface composition of the coordination polymers [{CuX}(2)(YNC(10)H(14)O)](n) (X = Cl, Y = NMe(2), NH(2); X = Br, Y = NH(2)) and dimers [{Cu(Me(2)NNC(10)H(14)O)}(2)(µ-X)(2)] (X = Cl or Br) studied by X-ray Photoelectron Spectroscopy corroborate the molecular properties and the reactivity trend.

17.
J Nanosci Nanotechnol ; 10(4): 2674-8, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20355483

ABSTRACT

N-doped ZnO films were deposited on glass substrates by RF magnetron sputtering with different deposition pressures. The samples were characterized by X-ray diffraction (XRD), atomic force morphology (AFM), X-ray photoelectron spectroscopy (XPS), Hall measurements and optical spectrophotometer. The XRD patterns confirmed that the films are polycrystalline and the influence of deposition pressure on the structural properties. AFM microstructures also authenticated the change in the size and shape of the grains as a function of deposition pressure; the root mean square (RMS) roughness has reached a maximum (10.65 nm) at 1.5 x 10(-2) mbar. XPS spectra revealed the change in the chemical composition. The amount of adsorbed oxygen and nitrogen at oxide sites has reached the maximum at 9.0 x 10(-3) mbar, where the film showed p-type conductivity. The optical transmittance spectra have indicated that the absorption edge is shifted towards the shorter wavelength at higher deposition pressure. Correspondingly, the optical band gap is increased from 2.17 to 2.80 eV. The average visible transmittance in the wavelength ranging 500-800 nm has been increased from 49% to 82%.

18.
J Phys Chem B ; 112(23): 6957-64, 2008 Jun 12.
Article in English | MEDLINE | ID: mdl-18489141

ABSTRACT

We present results from high-resolution electron energy loss spectroscopy (HREELS) and XPS studies of self-assembled monolayers of DNA. The monolayers are well-organized and display sharp vibrational peaks in the HREEL spectra. The electrons interact mainly with the backbone of the DNA. The XPS results indicate that, in most of the samples studied, the phosphates on the DNA are not charged.


Subject(s)
DNA/chemistry , Adsorption , Base Sequence , Electrons , Spectrum Analysis
19.
J Phys Chem B ; 109(33): 15958-67, 2005 Aug 25.
Article in English | MEDLINE | ID: mdl-16853025

ABSTRACT

A detailed study of the luminescence decay curves of pyrene included within p-tert-butylcalix[4]arene cavities and benzophenone into silicalite channels is reported. A new methodology for a lifetime distribution analysis of the decay curve of probes onto heterogeneous surfaces is presented, which allows for asymmetric distributions and uses Voigt profiles (Gaussian and Lorentzian mixture) instead of pure Gaussian or Lorentzian distributions. Our approach uses a very simple and widely available tool for fitting, the Microsoft Excel Solver. In the case of the pyrene/tert-butylcalix[4]arene sample, the room temperature luminescence detected in the microsecond time scale was not only the phosphorescence of pyrene but also monomer delayed fluorescence, crystal phosphorescence, and excimer delayed fluorescence. In the benzophenone/silicalite case, three emissive forms of benzophenone could be assigned, one of benzophenone included into the silicalite circular zigzag channels, another for emplacement into the elliptical straight channels and finally when benzophenone is placed at the crossing points of those silicalite channels, where smaller spatial restrictions for benzophenone exist.

20.
Chemphyschem ; 5(12): 1848-54, 2004 Dec 10.
Article in English | MEDLINE | ID: mdl-15648132

ABSTRACT

A new methodology for the determination of the fluorescence quantum yield of dyes adsorbed onto microcrystalline cellulose is presented and applied to rhodamine 101, cresyl violet and auramine O. It is based on a previously reported method by Ruetten and Thomas (J. Phys. Chem., 1998, 102, 598-606), which is not applicable to the dyes used in the present study. It uses ground-state diffuse reflectance spectra obtained with and without filters, which prevents the luminescence of the dye from reaching the integrating sphere and the photodetector. New equations are presented here, correcting for the fluorescence emission of the dye, which depends on the detector sensitivity. Cut-on filters, which have a transmittance close to unity in the absorption region, and close to zero in the emission region, of the dye are used to obtain corrected reflectance spectra. The influence of the substrate was also taken into account. This methodology may be applied to other probes and surfaces or emissions of a different nature (i.e., phosphorescence or delayed fluorescence), and constitutes a very simple and general procedure to solve the important problem of luminescence quantum yield determination of probes adsorbed onto solid powdered surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL