Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 8: 88, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19409081

ABSTRACT

BACKGROUND: Despite continuous efforts of the international community to reduce the impact of malaria on developing countries, no significant progress has been made in the recent years and the discovery of new drugs is more than ever needed. Out of the many proteins involved in the metabolic activities of the Plasmodium parasite, some are promising targets to carry out rational drug discovery. MOTIVATION: Recent years have witnessed the emergence of grids, which are highly distributed computing infrastructures particularly well fitted for embarrassingly parallel computations like docking. In 2005, a first attempt at using grids for large-scale virtual screening focused on plasmepsins and ended up in the identification of previously unknown scaffolds, which were confirmed in vitro to be active plasmepsin inhibitors. Following this success, a second deployment took place in the fall of 2006 focussing on one well known target, dihydrofolate reductase (DHFR), and on a new promising one, glutathione-S-transferase. METHODS: In silico drug design, especially vHTS is a widely and well-accepted technology in lead identification and lead optimization. This approach, therefore builds, upon the progress made in computational chemistry to achieve more accurate in silico docking and in information technology to design and operate large scale grid infrastructures. RESULTS: On the computational side, a sustained infrastructure has been developed: docking at large scale, using different strategies in result analysis, storing of the results on the fly into MySQL databases and application of molecular dynamics refinement are MM-PBSA and MM-GBSA rescoring. The modeling results obtained are very promising. Based on the modeling results, In vitro results are underway for all the targets against which screening is performed. CONCLUSION: The current paper describes the rational drug discovery activity at large scale, especially molecular docking using FlexX software on computational grids in finding hits against three different targets (PfGST, PfDHFR, PvDHFR (wild type and mutant forms) implicated in malaria. Grid-enabled virtual screening approach is proposed to produce focus compound libraries for other biological targets relevant to fight the infectious diseases of the developing world.


Subject(s)
Computational Biology/methods , Drug Delivery Systems , Drug Design , Malaria/drug therapy , Medical Informatics/organization & administration , Protozoan Proteins , Glutathione Transferase , Humans , Ligands , Matrix Attachment Regions , Pharmaceutical Preparations , Protein Binding , Tetrahydrofolate Dehydrogenase
2.
Proc Natl Acad Sci U S A ; 102(3): 838-43, 2005 Jan 18.
Article in English | MEDLINE | ID: mdl-15637156

ABSTRACT

Heartwater, a tick-borne disease of domestic and wild ruminants, is caused by the intracellular rickettsia Ehrlichia ruminantium (previously known as Cowdria ruminantium). It is a major constraint to livestock production throughout subSaharan Africa, and it threatens to invade the Americas, yet there is no immediate prospect of an effective vaccine. A shotgun genome sequencing project was undertaken in the expectation that access to the complete protein coding repertoire of the organism will facilitate the search for vaccine candidate genes. We report here the complete 1,516,355-bp sequence of the type strain, the stock derived from the South African Welgevonden isolate. Only 62% of the genome is predicted to be coding sequence, encoding 888 proteins and 41 stable RNA species. The most striking feature is the large number of tandemly repeated and duplicated sequences, some of continuously variable copy number, which contributes to the low proportion of coding sequence. These repeats have mediated numerous translocation and inversion events that have resulted in the duplication and truncation of some genes and have also given rise to new genes. There are 32 predicted pseudogenes, most of which are truncated fragments of genes associated with repeats. Rather then being the result of the reductive evolution seen in other intracellular bacteria, these pseudogenes appear to be the product of ongoing sequence duplication events.


Subject(s)
Ehrlichia ruminantium/genetics , Gene Dosage , Genome, Bacterial , Tandem Repeat Sequences , Base Sequence , Evolution, Molecular , Heartwater Disease/microbiology , Molecular Sequence Data , Pseudogenes , Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL