Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 187(1): 187-202, 2021 09 04.
Article in English | MEDLINE | ID: mdl-34015131

ABSTRACT

MicroProteins are potent post-translational regulators. In Arabidopsis (Arabidopsis thaliana), the miP1a/b microProteins delay floral transition by forming a complex with CONSTANS (CO) and the co-repressor protein TOPLESS. To better understand the function of the miP1a microProtein in floral repression, we performed a genetic suppressor screen to identify suppressors of miP1a (sum) function. One mutant, sum1, exhibited strong suppression of the miP1a-induced late-flowering phenotype. Mapping of sum1 identified another allele of the gene encoding the histone H3K4 demethylase JUMONJI14 (JMJ14), which is required for miP1a function. Plants carrying mutations in JMJ14 exhibit an early flowering phenotype that is largely dependent on CO activity, supporting an additional role for CO in the repressive complex. We further investigated whether miP1a function involves chromatin modification, performed whole-genome methylome sequencing studies with plants ectopically expressing miP1a, and identified differentially methylated regions (DMRs). Among these DMRs is the promoter of FLOWERING LOCUS T (FT), the prime target of miP1a that is ectopically methylated in a JMJ14-dependent manner. Moreover, when aberrantly expressed at the shoot apex, CO induces early flowering, but only when JMJ14 is mutated. Detailed analysis of the genetic interaction among CO, JMJ14, miP1a/b, and TPL revealed a potential role for CO as a repressor of flowering in the shoot apical meristem (SAM). Altogether, our results suggest that a repressor complex operates in the SAM, likely to maintain it in an undifferentiated state until leaf-derived florigen signals induce SAM conversion into a floral meristem.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Florigen/metabolism , Flowers/growth & development , Jumonji Domain-Containing Histone Demethylases/genetics , Meristem/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Flowers/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Meristem/genetics
2.
Development ; 147(10)2020 05 21.
Article in English | MEDLINE | ID: mdl-32345745

ABSTRACT

Class III homeodomain leucine zipper (HD-ZIPIII) transcription factors play fundamental roles in controlling plant development. The known HD-ZIPIII target genes encode proteins involved in the production and dissipation of the auxin signal, HD-ZIPII transcription factors and components that feedback to regulate HD-ZIPIII expression or protein activity. Here, we have investigated the regulatory hierarchies of the control of MORE AXILLARY BRANCHES2 (MAX2) by the HD-ZIPIII protein REVOLUTA (REV). We found that REV can interact with the promoter of MAX2 In agreement, rev10D gain-of-function mutants had increased levels of MAX2 expression, while rev loss-of-function mutants showed lower levels of MAX2 in some tissues. Like REV, MAX2 plays known roles in the control of plant architecture, photobiology and senescence, which prompted us to initiate a multi-level analysis of growth phenotypes of hd-zipIII, max2 and respective higher order mutants thereof. Our data suggest a complex relationship of synergistic and antagonistic activities between REV and MAX2; these interactions appear to depend on the developmental context and do not all involve the direct regulation of MAX2 by REV.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/genetics , Carrier Proteins/metabolism , Homeodomain Proteins/metabolism , Signal Transduction/genetics , Arabidopsis Proteins/chemistry , Cellular Senescence/genetics , Gene Expression Regulation, Plant , Homeodomain Proteins/chemistry , Leucine Zippers , Loss of Function Mutation , Meristem/growth & development , Meristem/metabolism , Phenotype , Plant Leaves/growth & development , Plant Leaves/metabolism , Plants, Genetically Modified , Transcription Factors/metabolism
3.
PLoS Genet ; 16(3): e1008678, 2020 03.
Article in English | MEDLINE | ID: mdl-32203519

ABSTRACT

Plants have evolved strategies to avoid shade and optimize the capture of sunlight. While some species are tolerant to shade, plants such as Arabidopsis thaliana are shade-intolerant and induce elongation of their hypocotyl to outcompete neighboring plants. We report the identification of a developmental module acting downstream of shade perception controlling vascular patterning. We show that Arabidopsis plants react to shade by increasing the number and types of water-conducting tracheary elements in the vascular cylinder to maintain vascular density constant. Mutations in genes affecting vascular patterning impair the production of additional xylem and also show defects in the shade-induced hypocotyl elongation response. Comparative analysis of the shade-induced transcriptomes revealed differences between wild type and vascular patterning mutants and it appears that the latter mutants fail to induce sets of genes encoding biosynthetic and cell wall modifying enzymes. Our results thus set the stage for a deeper understanding of how growth and patterning are coordinated in a dynamic environment.


Subject(s)
Body Patterning/physiology , Hypocotyl/metabolism , Light , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Hypocotyl/physiology , Plant Leaves/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...