Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol Rep ; 16(3): e13251, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778789

ABSTRACT

We conducted a research campaign in a neotropical rainforest in Costa Rica throughout the drought phase of an El-Nino Southern Oscillation event to determine microbial community dynamics and soil C fluxes. Our study included nests of the leafcutter ant Atta cephalotes, as soil disturbances made by these ecosystem engineers may influence microbial drought response. Drought decreased the diversity of microbes and the abundance of core microbiome taxa, including Verrucomicrobial bacteria and Sordariomycete fungi. Despite initial responses of decreasing diversity and altered composition, 6 months post-drought the microbiomes were similar to pre-drought conditions, demonstrating the resilience of soil microbial communities to drought events. A. cephalotes nests altered fungal composition in the surrounding soil, and reduced both fungal mortality and growth of Acidobacteria post-drought. Drought increased CH4 consumption in soils due to lower soil moisture, and A. cephalotes nests decrease the variability of CH4 emissions in some soil types. CH4 emissions were tracked by the abundance of methanotrophic bacteria and fungal composition. These results characterize the microbiome of tropical soils across both time and space during drought and provide evidence for the importance of leafcutter ant nests in shaping soil microbiomes and enhancing microbial resilience during climatic perturbations.


Subject(s)
Ants , Bacteria , Droughts , Fungi , Microbiota , Rainforest , Soil Microbiology , Tropical Climate , Ants/microbiology , Ants/physiology , Animals , Fungi/classification , Fungi/physiology , Fungi/isolation & purification , Costa Rica , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Soil/chemistry , Forests
2.
Sci Total Environ ; 858(Pt 3): 159882, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36334668

ABSTRACT

BACKGROUND: A high incidence of asthma is prevalent among residents near the Salton Sea, a large inland terminal lake in southern California. This arid region has high levels of ambient particulate matter (PM); yet while high PM levels are often associated with asthma in many environments, it is possible that the rapidly retreating lake, and exposed playa or lakebed, may contribute components with a specific role in promoting asthma symptoms. OBJECTIVES: Our hypothesis is that asthma may be higher in residents closest to the Salton Sea due to chronic exposures to playa dust. Playa emissions may be concentrating dissolved material from the lake, with microbial components capable of inducing pulmonary innate immune responses. To test this hypothesis, we used a mouse model of aerosol exposures to assess the effects of playa dust. METHODS: From dust collected around the Salton Sea region, aqueous extracts were used to generate aerosols, which were injected into an environmental chamber for mouse exposure studies. We compared the effects of exposure to Salton Sea aerosols, as well as to known immunostimulatory reference materials. Acute 48-h and chronic 7-day exposures were compared, with lungs analyzed for inflammatory cell recruitment and gene expression. RESULTS: Dust from sites nearest to the Salton Sea triggered lung neutrophil inflammation that was stronger at 48-h but reduced at 7-days. This acute inflammatory profile and kinetics resembled the response to innate immune ligands LTA and LPS while distinct from the classic allergic response to Alternaria. CONCLUSION: Lung inflammatory responses to Salton Sea dusts are similar to acute innate immune responses, raising the possibility that microbial components are entrained in the dust, promoting inflammation. This effect highlights the health risks at drying terminal lakes from inflammatory components in dust emissions from exposed lakebed.


Subject(s)
Dust , Pneumonia , Animals , Mice , Pneumonia/chemically induced , Immunity, Innate
3.
Front Microbiol ; 13: 856454, 2022.
Article in English | MEDLINE | ID: mdl-35836417

ABSTRACT

Dust provides an ecologically significant input of nutrients, especially in slowly eroding ecosystems where chemical weathering intensity limits nutrient inputs from underlying bedrock. In addition to nutrient inputs, incoming dust is a vector for dispersing dust-associated microorganisms. While little is known about dust-microbial dispersal, dust deposits may have transformative effects on ecosystems far from where the dust was emitted. Using molecular analyses, we examined spatiotemporal variation in incoming dust microbiomes along an elevational gradient within the Sierra Nevada of California. We sampled throughout two dry seasons and found that dust microbiomes differed by elevation across two summer dry seasons (2014 and 2015), which corresponded to competing droughts in dust source areas. Dust microbial taxa richness decreased with elevation and was inversely proportional to dust heterogeneity. Likewise, dust phosphorus content increased with elevation. At lower elevations, early season dust microbiomes were more diverse than those found later in the year. The relative abundances of microbial groups shifted during the summer dry season. Furthermore, mutualistic fungal diversity increased with elevation, which may have corresponded with the biogeography of their plant hosts. Although dust fungal pathogen diversity was equivalent across elevations, elevation and sampling month interactions for the relative abundance, diversity, and richness of fungal pathogens suggest that these pathogens differed temporally across elevations, with potential implications for humans and wildlife. This study shows that landscape topography and droughts in source locations may alter the composition and diversity of ecologically relevant dust-associated microorganisms.

4.
J Inflamm Res ; 14: 4035-4052, 2021.
Article in English | MEDLINE | ID: mdl-34456580

ABSTRACT

PURPOSE: The Salton Sea, California's largest lake, is designated as an agricultural drainage reservoir. In recent years, the lake has experienced shrinkage due to reduced water sources, increasing levels of aerosolized dusts in surrounding regions. Communities surrounding the Salton Sea have increased asthma prevalence versus the rest of California; however, a connection between dust inhalation and lung health impacts has not been defined. METHODS: We used an established intranasal dust exposure murine model to study the lung inflammatory response following single or repetitive (7-day) exposure to extracts of dusts collected in regions surrounding the Salton Sea (SSDE), complemented with in vitro investigations assessing SSDE impacts on the airway epithelium. RESULTS: In these investigations, single or repetitive SSDE exposure induced significant lung inflammatory cytokine release concomitant with neutrophil influx. Repetitive SSDE exposure led to significant lung eosinophil recruitment and altered expression of genes associated with allergen-mediated immune response, including Clec4e. SSDE treatment of human bronchial epithelial cells (BEAS-2B) induced inflammatory cytokine production at 5- and 24-hours post-treatment. When BEAS-2B were exposed to protease activity-depleted SSDE (PDSSDE) or treated with SSDE in the context of protease-activated receptor-1 and -2 antagonism, inflammatory cytokine release was decreased. Furthermore, repetitive exposure to PDSSDE led to decreased neutrophil and eosinophilic influx and IL-6 release in mice compared to SSDE-challenged mice. CONCLUSION: These investigations demonstrate potent lung inflammatory responses and tissue remodeling in response to SSDE, in part due to environmental proteases found within the dusts. These studies provide the first evidence supporting a link between environmental dust exposure, protease-mediated immune activation, and respiratory disease in the Salton Sea region.

5.
mBio ; 10(5)2019 10 01.
Article in English | MEDLINE | ID: mdl-31575762

ABSTRACT

While most bacterial and archaeal taxa living in surface soils remain undescribed, this problem is exacerbated in deeper soils, owing to the unique oligotrophic conditions found in the subsurface. Additionally, previous studies of soil microbiomes have focused almost exclusively on surface soils, even though the microbes living in deeper soils also play critical roles in a wide range of biogeochemical processes. We examined soils collected from 20 distinct profiles across the United States to characterize the bacterial and archaeal communities that live in subsurface soils and to determine whether there are consistent changes in soil microbial communities with depth across a wide range of soil and environmental conditions. We found that bacterial and archaeal diversity generally decreased with depth, as did the degree of similarity of microbial communities to those found in surface horizons. We observed five phyla that consistently increased in relative abundance with depth across our soil profiles: Chloroflexi, Nitrospirae, Euryarchaeota, and candidate phyla GAL15 and Dormibacteraeota (formerly AD3). Leveraging the unusually high abundance of Dormibacteraeota at depth, we assembled genomes representative of this candidate phylum and identified traits that are likely to be beneficial in low-nutrient environments, including the synthesis and storage of carbohydrates, the potential to use carbon monoxide (CO) as a supplemental energy source, and the ability to form spores. Together these attributes likely allow members of the candidate phylum Dormibacteraeota to flourish in deeper soils and provide insight into the survival and growth strategies employed by the microbes that thrive in oligotrophic soil environments.IMPORTANCE Soil profiles are rarely homogeneous. Resource availability and microbial abundances typically decrease with soil depth, but microbes found in deeper horizons are still important components of terrestrial ecosystems. By studying 20 soil profiles across the United States, we documented consistent changes in soil bacterial and archaeal communities with depth. Deeper soils harbored communities distinct from those of the more commonly studied surface horizons. Most notably, we found that the candidate phylum Dormibacteraeota (formerly AD3) was often dominant in subsurface soils, and we used genomes from uncultivated members of this group to identify why these taxa are able to thrive in such resource-limited environments. Simply digging deeper into soil can reveal a surprising number of novel microbes with unique adaptations to oligotrophic subsurface conditions.


Subject(s)
Archaea/isolation & purification , Bacteria/isolation & purification , Soil Microbiology , Archaea/classification , Archaea/growth & development , Bacteria/classification , Bacteria/growth & development , Metagenomics
6.
Rev Sci Instrum ; 90(3): 035115, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30927824

ABSTRACT

Air pollution poses a significant threat to the environment and human health. Most in vivo health studies conducted regarding air pollutants, including particulate matter (PM) and gas phase pollutants, have been either through traditional medical intranasal treatment or using a tiny chamber, which limit animal activities. In this study, we designed and tested a large, whole-body, multiple animal exposure chamber with uniform dispersion and exposure stability for animal studies. The chamber simultaneously controls particle size distribution and PM mass concentration. Two different methods were used to generate aerosol suspension through either soluble material (Alternaria extract), liquid particle suspension (nanosilica solution), or dry powder (silica powder). We demonstrate that the chamber system provides well controlled and characterized whole animal exposures, where dosage is by inhalation of particulate matter.


Subject(s)
Air Pollution/analysis , Environmental Monitoring/instrumentation , Animals , Equipment Design , Industrial Waste/analysis , Nanoparticles/chemistry , Particle Size , Silicon Dioxide/analysis , Silicon Dioxide/chemistry , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...