Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Poult Sci ; 103(6): 103682, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38593545

ABSTRACT

White striping (WS) is an emerging myopathy that results in significant economic losses as high as $1 billion (combined with losses derived from other breast myopathies including woody breast and spaghetti meat) to the global poultry industry. White striping is detected as the occurrence of white lines on raw poultry meat. The exact etiologies for WS are still unclear. Proteomic analyses of co-expressed WS and woody breast phenotypes previously demonstrated dysfunctions in carbohydrate metabolism, protein synthesis, and calcium buffering capabilities in muscle cells. In this study, we conducted shotgun proteomics on chicken breast fillets exhibiting only WS that were collected at approximately 6 h postmortem. After determining WS severity, protein extractions were conducted from severe WS meat with no woody breast (WB) condition (n = 5) and normal non-affected (no WS) control meat (n = 5). Shotgun proteomics was conducted by Orbitrap Lumos, tandem mass tag (TMT) analysis. As results, 148 differentially abundant proteins (|fold change|>1.4; p-value < 0.05) were identified in the WS meats compared with controls. The significant canonical pathways included BAG2 signaling pathway, glycogen degradation II, isoleucine degradation I, aldosterone signaling in epithelial cells, and valine degradation I. The potential upstream regulators include LIPE, UCP1, ATP5IF1, and DMD. The results of this study provide additional insights into the cellular mechanisms on the WS myopathy and meat quality.

2.
Physiol Rep ; 12(5): e15972, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38467563

ABSTRACT

With climate change, selection for water efficiency and heat resilience are vitally important. We undertook this study to determine the effect of chronic cyclic heat stress (HS) on the hypothalamic expression profile of water homeostasis-associated markers in high (HWE)- and low (LWE)-water efficient chicken lines. HS significantly elevated core body temperatures of both lines. However, the amplitude was higher by 0.5-1°C in HWE compared to their LWE counterparts. HWE line drank significantly less water than LWE during both thermoneutral (TN) and HS conditions, and HS increased water intake in both lines with pronounced magnitude in LWE birds. HWE had better feed conversion ratio (FCR), water conversion ratio (WCR), and water to feed intake ratio. At the molecular level, the overall hypothalamic expression of aquaporins (AQP8 and AQP12), arginine vasopressin (AVP) and its related receptor AVP2R, angiotensinogen (AGT), angiotensin II receptor type 1 (AT1), and calbindin 2 (CALB2) were significantly lower; however, CALB1 mRNA and AQP2 protein levels were higher in HWE compared to LWE line. Compared to TN conditions, HS exposure significantly increased mRNA abundances of AQPs (8, 12), AVPR1a, natriuretic peptide A (NPPA), angiotensin I-converting enzyme (ACE), CALB1 and 2, and transient receptor potential cation channel subfamily V member 1 and 4 (TRPV1 and TRPV4) as well as the protein levels of AQP2, however it decreased that of AQP4 gene expression. A significant line by environment interaction was observed in several hypothalamic genes. Heat stress significantly upregulated AQP2 and SCT at mRNA levels and AQP1 and AQP3 at both mRNA and protein levels, but it downregulated that of AQP4 protein only in LWE birds. In HWE broilers, however, HS upregulated the hypothalamic expression of renin (REN) and AVPR1b genes and AQP5 proteins, but it downregulated that of AQP3 protein. The hypothalamic expression of AQP (5, 7, 10, and 11) genes was increased by HS in both chicken lines. In summary, this is the first report showing improvement of growth performances in HWE birds. The hypothalamic expression of several genes was affected in a line- and/or environment-dependent manner, revealing potential molecular signatures for water efficiency and/or heat tolerance in chickens.


Subject(s)
Aquaporin 2 , Chickens , Animals , Chickens/genetics , Aquaporin 2/genetics , Aquaporin 2/metabolism , Water/metabolism , Hot Temperature , Heat-Shock Response/genetics , RNA, Messenger/metabolism
3.
Vet Sci ; 11(2)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38393075

ABSTRACT

Fenugreek seeds (FSs) are a natural source of bioactive compounds that may modulate the immune system and gut microbiota in broilers. This study examined the effects of dietary fenugreek seed powder on immune-related gene expression and cecal microbiota composition in broilers. A total of 144 broiler chickens were randomly allocated to three dietary groups, CON (0 g/kg FS, FS5 (5 g/kg FS) and FS10 (10 g/kg FS), each with 6 replicates of 8 birds. Ileum tissues and cecal contents were collected on day 42 for the mRNA expression of inflammation and antimicrobial defense-related genes and cecal microbiome diversity, respectively. The results indicated that fenugreek seeds downregulated mRNA-level inflammation and antimicrobial defense-related genes: IL6, IL8L2, CASP6, PTGS2, IRF7, AvBD9, AvBD10, and AvBD11. Moreover, fenugreek seeds altered the cecal microbial community by increasing the population of Firmicutes and decreasing the population of Actinobacteriota, Gemmatimonadota and Verrucomicrobiota at the phylum level and increasing Alistipes, Bacteriodes and Prevotellaceae at the genera level. These findings suggest that fenugreek seeds have a positive impact on the immunological profile and microbiome of broiler chickens, possibly through the interplay of the immune system and the gut microbiome.

4.
Heliyon ; 10(3): e25491, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38352744

ABSTRACT

Cuchia eel (Monopterus cuchia) is among the most sought-after freshwater fish, owing to its exceptional nutritional profile and high consumer demand. The current research aimed to establish baseline data by comparing the proximate composition, hematological, and plasma biochemical indices of Cuchia eel populations across six different geographical locations in Bangladesh: Bogra, Haluaghat, Jamalpur, Moktagacha, Sylhet, and Tangail. By examining these parameters, we aim to gain valuable insights into the nutritional benefits, physiological responses, and potential adaptations of this species to varying environments. The statistical analysis revealed no significant (P > 0.05) variances in the whole-body proximate composition of the fish captured from distinct areas. However, it was observed that different geographical regions had remarkable impacts on the variations of the majority of the hematological parameters, except for some cases. Additionally, there was a notable (P < 0.05) increase or decrease in most of the serum biochemical contents in certain localities as compared to others in this study. Light microscopic examination of Cuchia eel blood smears exhibited lower numbers but larger sizes of RBCs. The findings of this study lead to the conclusion that different localities had significant impacts on the hematology and blood biochemical indices of Cuchia eel, even though the whole-body proximate composition showed no significant variations. This research contributes to a deeper understanding of the physiological aspects of Cuchia eel.

5.
Front Vet Sci ; 10: 1298587, 2023.
Article in English | MEDLINE | ID: mdl-38089709

ABSTRACT

Background: The objective of the present study was to evaluate the potential synergistic impact of the combination of fenugreek seeds (FS) and Bacillus-based direct-fed microbials (DFM) on growth performance, intestinal health, and hematological parameters of broiler chickens. Methods: A total of 160 one-day-old (Ross 308) broiler chicks were randomly assigned to a 2 × 2 factorial arrangement, with two levels of FS (0 and 5 g/kg) and two levels of Bacillus-DFM (0 and 0.1 g/kg), with five replicates of 8 birds each. Results: The result showed that dietary supplementation of FS at 5 g/kg did not improve the growth performance of broilers but impaired the early growth performance by reducing body weight gain and increasing feed conversion ratio, which was recovered during finisher phase. Dietary supplementation of Bacillus-based DFM at 0.1 g/kg did not affect the performance variables but increased the feed conversion ratio. The interaction of fenugreek seeds and Bacillus-based DFM showed synergistic effects on growth performance during the later stages of production. However, antagonistic effects were observed on the blood parameters and the gut morphology. Conclusion: This study demonstrated that FS and DFM had different effects on the broiler health and production depending on the phase of production. The interaction between FS and DFM revealed synergistic effects on growth performance during the finisher phase, but antagonistic effects on blood parameters and gut morphology. Further studies are needed to elucidate the underlying mechanisms and optimize the dosage and combination of FS and DFM for broiler health and production.

6.
Poult Sci ; 102(10): 102887, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37572620

ABSTRACT

The United States is the largest broiler producer in the world, and Americans consume about 45 kg of chicken per capita per year, which generates substantial economic and environmental footprints. We conduct techno-economic analysis and life cycle assessment (TEA/LCA) to evaluate the sustainability performance of the U.S. broiler industry and quantify the cost, greenhouse gas (GHG) emissions, energy, water, land, fertilizer, and respiratory impacts of 7 broiler production scenarios for a contract Grower, Integrator, and Combined control volume. The assessment is a farm-gate to farm-gate analysis that includes capital cost of chicken houses, labor, chicks brought into the farm, feeds, on-site fuels, and on-site emissions. We found that economics for the Integrator are profitable and dominated by the cost of corn and soybean meal feeds, payments to the Grower, and revenue from live broilers. Additionally, we found that economics for the Grower generate modest return on investment (ROI) largely based on the cost of houses and labor when compared to contract revenue from the Integrator. Environmental impacts for GHG, energy, and respiratory effects are primarily associated with upstream feed production (roughly 65%-80% of total impacts) and on-site fuel consumption (∼20%-35% of total impacts), while those for water, land, and eutrophication are almost entirely attributable to upstream feed production (litter spreading has a low economic allocation factor). Tradeoffs among sustainability metrics are further explored with a sensitivity analysis and by evaluating cost/environmental benefit scenarios.


Subject(s)
Chickens , Greenhouse Gases , Humans , United States , Animals , Environment , Farms , Zea mays , Water , Greenhouse Effect
7.
Vet Sci ; 9(5)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35622735

ABSTRACT

Two experiments were conducted to evaluate the effects of fenugreek seeds (FS) as a potential alternative to antibiotic growth promoters in broiler chickens. In the first experiment, one-day-old Ross (n = 160) straight-run broilers were fed FS at 0 g, 2.5 g, 5 g, and 10 g/kg of diet during the starter (from 1 to 21 days) and finisher phase (from 22 to 35 days) with four replicates of ten birds each. In the second experiment, one-day-old Ross (n = 144) male broilers were fed 0 g, 5 g, and 10 g FS per kilogram of diet during the starter (from 1 to 21 days) and finisher phase (from 22 to 42 days) with six replicates of eight birds each. In addition to growth performance, hematological parameters and intestinal histomorphology were measured in the second experiment. FS linearly reduced the body weight gain (BWG) (p < 0.001), feed intake (FI) (p < 0.05), and increased feed conversion ratio (FCR) (p < 0.05) during the starter phase in both experiments. However, no significant effects on BWG, FI, and FCR were observed during the finisher phase. Moreover, the overall BWG and FI were linearly reduced (p < 0.05) with the increasing levels of FS, but BWG and FI were similar in the 5 g/kg FS group and control group. The inclusion of FS had a linear increase in white blood cell (WBC), heterophil, and lymphocyte count (p < 0.005) and the decrease in hematocrit % (p = 0.004) and total bilirubin (p = 0.001). The villus height and villus height: crypt depth ratio of jejunum and ileum were significantly lower in 5 g FS and 10 g FS treatments (p < 0.001) compared to the control. The result indicates that the dietary inclusion of FS reduces the early growth performance, increases the WBC counts, and negatively affects the intestinal morphology of broiler chickens.

8.
J Med Food ; 25(3): 293-302, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34883038

ABSTRACT

To identify possible mechanisms involved in the development and progression of nonalcoholic fatty liver disease (NAFLD), we conducted shotgun proteomics analysis on liver of obese Zucker rats fed either casein (CAS) or soy protein isolate (SPI) for 8 and 16 weeks. Rats (7 weeks old, n = 8-9/group) were randomly assigned to either a CAS-based or an SPI-based diet. Rats were killed after 8 or 16 weeks of feeding and livers were stored at -80°C. Ingenuity Pathway Analysis (IPA) software was used to facilitate interpretation of proteomics data. Predictions of activation or inhibition of molecules in the data were made based on activation z-score and P value of overlap (P < .05). Activation z-scores ≥2.0 indicate that a molecule is predicted to be activated, whereas activation z-scores of less than or equal to -2.0 indicate that a target molecule is predicted to be inhibited. Upstream regulator analysis with IPA revealed Neuregulin 1 (NRG1) to be the top activated protein in (z-score = 2.48, P < .05), and MKNK1 as the top inhibited protein (z-score = -2.83, P < .05) in SPI diet compared with CAS diet after both 8 and 16 weeks of SPI feeding. Regulator effects analysis also predicted that some proteins would be participating, directly or indirectly, in the inhibition of immune response functions (such as leukocyte migration) and lipid metabolism (such as synthesis of lipids) in SPI-fed rats relative to CAS-fed rats. Our results suggest that SPI diet modifies the expression of proteins that could be involved in the reduction of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Proteomics , Rats , Rats, Zucker , Soybean Proteins
9.
Front Physiol ; 12: 712694, 2021.
Article in English | MEDLINE | ID: mdl-34366899

ABSTRACT

Woody breast (WB) myopathy results in poor muscle quality. The increasing incidence of WB over the last several years indicates a need for improved prediction or early diagnosis. We hypothesized that the use of body fluids, including blood, may be more suitable than breast muscle tissue in developing a minimally invasive diagnostic tool for WB detection. To identify potential early-age-biomarkers that may represent the potential onset of WB, blood samples were collected from 100, 4 wks old commercial male broilers. At 8 wks of age, WB conditions were scored by manual palpation. A total of 32 blood plasma samples (eight for each group of WB and non-WB control birds at two time points, 4 wks and 8 wks) were subjected to shotgun proteomics and untargeted metabolomics to identify differentially abundant plasma proteins and metabolites in WB broilers compared to non-WB control (Con) broilers. From the proteomics assay, 25 and 16 plasma proteins were differentially abundant (p < 0.05) in the 4 and 8 wks old samples, respectively, in WB compared with Con broilers. Of those, FRA10A associated CGG repeat 1 (FRAG10AC1) showed >2-fold higher abundance in WB compared with controls. In the 8 wks old broilers, 4 and 12 plasma proteins displayed higher and lower abundances, respectively, in WB compared with controls. Myosin heavy chain 9 (MYH9) and lipopolysaccharide binding protein (LBP) showed more than 2-fold higher abundances in WB compared with controls, while transferrin (TF) and complement C1s (C1S) showed more than 2-fold lower abundances compared with controls. From the untargeted metabolomics assay, 33 and 19 plasma metabolites were differentially abundant in birds at 4 and 8 wks of age, respectively, in WB compared with controls. In 4 wks old broilers, plasma 3-hydroxybutyric acid (3-HB) and raffinose concentrations showed the highest and lowest fold changes, respectively, in WB compared with controls. The blood plasma 3-HB and raffinose concentrations were confirmed with targeted biochemical assays. Blood biomarkers, such as 3-HB and raffinose, may be suitable candidate targets in the prediction of WB onset at early ages.

10.
Front Nutr ; 8: 699620, 2021.
Article in English | MEDLINE | ID: mdl-34262928

ABSTRACT

Obesity can lead to chronic health complications such as nonalcoholic fatty liver disease (NAFLD). NAFLD is characterized by lipid aggregation in the hepatocytes and inflammation of the liver tissue as a consequence that can contribute to the development of cirrhosis and hepatocellular carcinoma (HCC). Previously, we reported that feeding obese Zucker rats with soy protein isolate (SPI) can reduce liver steatosis when compared with a casein (CAS) diet as a control. However, the effects of SPI on cytochrome P450 (CYP) in an obese rat model are less known. In addition, there is a lack of information concerning the consumption of soy protein in adolescents and its effect in reducing the early onset of NAFLD in this group. Our main goal was to understand if the SPI diet had any impact on the hepatic CYP gene expression when compared with the CAS diet. For this purpose, we used the transcriptomic data obtained in a previous study in which liver samples were collected from obese rats after short-term (eight-week) and long-term (16-week) feeding of SPI (n = 8 per group). To analyze this RNAseq data, we used Ingenuity Pathway Analysis (IPA) software. Comparing short- vs long-term feeding revealed an increase in the number of downregulated CYP genes from three at 8 weeks of SPI diet to five at 16 weeks of the same diet (P ≤ 0.05). On the other hand, upregulated CYP gene numbers showed a small increase in the long-term SPI diet compared to the short-term SPI diet, from 14 genes at 8 weeks to 17 genes at 16 weeks (P ≤ 0.05). The observed changes may have an important role in the attenuation of liver steatosis.

11.
Front Vet Sci ; 8: 640968, 2021.
Article in English | MEDLINE | ID: mdl-34041289

ABSTRACT

Proteins are considered the most expensive nutrients in commercial modern broiler production, and their dietary inclusion at low levels is pivotal to minimize feed costs and reduce nitrogen waste. The quest for an environmentally friendly source of proteins that favor the formulation of low protein diets without compromising broiler health, welfare, and growth performance has become a hotspot in nutrition research. Due to its high protein content, the naturally growing Spirulina microalgae is considered a promising nutrient source. The purpose of the present study was, therefore, to determine the effects of Spirulina supplementation on liver bacterial translocation, hematological profile, and circulating inflammatory and redox markers in broilers fed a low-protein diet. One-day-old Ross 708 male broilers (n = 180) were randomly assigned into one of three experimental treatments: standard diet as a control, low protein diet, and low protein diet supplemented with 100 g/kg of Spirulina. Target molecular markers were measured in the peripheral blood circulation using real-time quantitative PCR. Reducing dietary proteins increased bacterial translocation and systemic inflammation as indicated by proportions of basophils among blood leukocytes. The expression levels of circulating pro-inflammatory cytokines [interleukin (IL)-3, IL-6, IL-4, IL-18, and tumor necrosis factor-α], chemokines (CCL-20), and NOD-like receptor family pyrin domain containing 3 inflammasome were significantly upregulated in birds fed the low protein diet compared with the control. The inclusion of Spirulina reversed these effects, which indicates that Spirulina reduces systemic inflammation- and bacterial translocation-induced by a low protein diet and could be a promising alternative protein source in poultry diets.

12.
Poult Sci ; 100(6): 101138, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33975047

ABSTRACT

Oral administration of fluorescein isothiocyanate dextran (FITC-d) has been used as an indicator for intestinal permeability in poultry research for several years. Under healthy conditions, tight junctions in the intestinal wall will not allow the 4-6kDa FITC-d to enter the bloodstream. Detection of FITC-d in serum (1-hour post-oral administration of FITC-d) has proven to be a reliable indicator of leaky gut syndrome (increased intestinal inflammation and disruption of tight junctions). Administration of supplementary phytobiotics in feed, particularly products with high beta-carotene levels or other pigments, has resulted in strong serum background fluorescence, which can render this assay unreliable. To account for this increase in background autofluorescence, the FITC-d assay procedure has been modified to accommodate these particular serum samples by including pre-administration serum collection from each treatment group to remove background fluorescence. The modified FITC-d procedure detailed will allow for analysis of intestinal permeability in pigmented serum.


Subject(s)
Chickens , Poultry , Animals , Dextrans , Diet/veterinary , Fluorescein-5-isothiocyanate/analogs & derivatives , Intestinal Mucosa , Permeability
13.
J Med Food ; 24(9): 1010-1016, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33751907

ABSTRACT

Obesity can lead to several health disorders including nonalcoholic fatty liver disease (NAFLD), the aggregation of lipids within hepatocytes, and consequent inflammation of the liver tissue. Previously, we reported that feeding obese Zucker rats with soy protein isolate (SPI) can reduce liver steatosis. To understand how SPI reduced liver steatosis, we conducted global gene expression analysis on liver samples obtained from these rats after short- (8 weeks) and long-term SPI feeding (16 weeks). We compared and contrasted these data using Ingenuity Pathway Analysis (IPA) software. This study focused mainly on target molecules that could be participating in inflammation processes and lipid metabolism that are well-known components of NAFLD. Inflammatory response was predicted to be inhibited in animals fed the SPI diet at both 8 and 16 weeks of experiment. This general prediction was based on negative activation z scores obtained through IPA (z score < -2.0, P < .00001) for eight aspects of immune function/inflammatory response. Lipid metabolism was predicted to be strongly enhanced in rats fed the SPI diet for 16 weeks than for 8 weeks. This prediction was based on positive activation z scores (z scores >2.0, P < .00001) of eight functions involved in lipid transport and metabolism. We observed that the longer the rats were fed the SPI diet, the more beneficial it resulted against NAFLD. Based on our findings, the predicted reductions in inflammatory mechanisms while enhancing lipid transport out of the liver could be the reasons behind the reduction of liver steatosis.


Subject(s)
Non-alcoholic Fatty Liver Disease , Soybean Proteins , Animals , Inflammation/genetics , Liver , Non-alcoholic Fatty Liver Disease/genetics , Obesity/genetics , Rats , Rats, Zucker
14.
Foods ; 10(1)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33419207

ABSTRACT

In an effort to understand the apparent trade-off between the continual push for growth performance and the recent emergence of muscle pathologies, shotgun proteomics was conducted on breast muscle obtained at ~8 weeks from commercial broilers with wooden breast (WB) myopathy and compared with that in pedigree male (PedM) broilers exhibiting high feed efficiency (FE). Comparison of the two proteomic datasets was facilitated using the overlay function of Ingenuity Pathway Analysis (IPA) (Qiagen, CA, USA). We focused on upstream regulator analysis and disease-function analysis that provides predictions of activation or inhibition of molecules based on (a) expression of downstream target molecules, (b) the IPA scientific citation database. Angiopoeitin 2 (ANGPT2) exhibited the highest predicted activation Z-score of all molecules in the WB dataset, suggesting that the proteomic landscape of WB myopathy would promote vascularization. Overlaying the FE proteomics data on the WB ANGPT2 upstream regulator network presented no commonality of protein expression and no prediction of ANGPT2 activation. Peroxisome proliferator coactivator 1 alpha (PGC1α) was predicted to be inhibited, suggesting that mitochondrial biogenesis was suppressed in WB. PGC1α was predicted to be activated in high FE pedigree male broilers. Whereas RICTOR (rapamycin independent companion of mammalian target of rapamycin) was predicted to be inhibited in both WB and FE datasets, the predictions were based on different downstream molecules. Other transcription factors predicted to be activated in WB muscle included epidermal growth factor (EGFR), X box binding protein (XBP1), transforming growth factor beta 1 (TGFB1) and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2). Inhibitions of aryl hydrocarbon receptor (AHR), AHR nuclear translocator (ARNT) and estrogen related receptor gamma (ESRRG) were also predicted in the WB muscle. These findings indicate that there are considerable differences in upstream regulators based on downstream protein expression observed in WB myopathy and in high FE PedM broilers that may provide additional insight into the etiology of WB myopathy.

15.
Front Nutr ; 7: 607970, 2020.
Article in English | MEDLINE | ID: mdl-33363197

ABSTRACT

To determine how soy protein isolate (SPI) ameliorated liver steatosis in male obese Zucker rats, we conducted global transcriptomic expression (RNAseq) analysis on liver samples of male rats fed either the SPI or a control casein (CAS)-based diet (n = 8 per group) for 16 weeks. Liver transcriptomics were analyzed using an Ilumina HiSeq system with 2 × 100 base pair paired-end reads method. Bioinformatics was conducted using Ingenuity Pathway Analysis (IPA) software (Qiagen, CA) with P < 0.05 and 1.3-fold differential expression cutoff values. Regression analysis between RNAseq data and targeted mRNA expression analysis of 12 top differentially expressed genes (from the IPA program) using quantitative PCR (qPCR) revealed a significant regression analysis (r 2 = 0.69, P = 0.0008). In addition, all qPCR values had qualitatively similar direction of up- or down-regulation compared to the RNAseq transcriptomic data. Diseases and function analyses that were based on differentially expressed target molecules in the dataset predicted that lipid metabolism would be enhanced whereas inflammation was predicted to be inhibited in SPI-fed compared to CAS-fed rats at 16 weeks. Combining upstream regulator and regulator effects functions in IPA facilitates the prediction of upstream regulators (e.g., transcription regulators) that could play important roles in attenuating or promoting liver steatosis due to SPI or CAS diets. Upstream regulators that were predicted to be activated (from expression of down-stream targets) linked to increased conversion of lipid and transport of lipid in SPI-fed rats included hepatocyte nuclear factor 4 alpha (HNF4A) and aryl hydrocarbon receptor (AHR). Upstream regulators that were predicted to be activated in CAS-fed rats linked to activation of phagocytosis and neutrophil chemotaxis included colony stimulating factor 2 and tumor necrosis factor. The results provide clear indication that long-term SPI-fed rats exhibited diminished inflammatory response and increased lipid transport in liver compared to CAS-fed rats that likely would contribute to reduced liver steatosis in this obese Zucker rat model.

16.
Food Funct ; 10(12): 8218-8229, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31701992

ABSTRACT

Previously, we reported that feeding soy protein isolate (SPI) reduced liver steatosis in obese rats compared to those fed a casein (CAS)-based diet; however, the mechanism for this protection is unknown. To gain insight into the ability of SPI to ameliorate liver steatosis, we conducted transcriptomic (RNAseq) analysis on liver samples from obese rats fed either the SPI- or CAS-based diets (n = 8 per group) for 8 weeks using an Ilumina HiSeq with 100 base paired end reads for sequencing. Data were analyzed by Ingenuity Pathway Analysis (IPA) software using a P < 0.05 and 1.3-fold differential expression cutoff values between the SPI- and CAS-based groups. To independently validate the RNAseq data, we conducted targeted mRNA expression analysis using quantitative PCR (qPCR) on a subset of differently expressed genes. The results indicate that mRNA expression by qPCR concurred with RNAseq for NPTX2, GPT, INMT, and HAL that were up-regulated in SPI-fed rats (P < 0.05) and PRSS8, AJUBA, CSF2RB, and Cyp2c12 that were down-regulated (P < 0.05) in SPI-fed rats compared to CAS-fed rats. Our findings may shed light on understanding mechanisms enabling SPI diet to reduce liver steatosis in this obese Zucker rat model.


Subject(s)
Caseins/metabolism , Fatty Liver/diet therapy , Fatty Liver/genetics , Liver/metabolism , Obesity/diet therapy , Obesity/genetics , Soybean Proteins/metabolism , Animals , Cytokine Receptor Common beta Subunit/genetics , Cytokine Receptor Common beta Subunit/metabolism , Fatty Liver/metabolism , Gene Expression , Humans , Male , Methyltransferases/genetics , Methyltransferases/metabolism , Obesity/metabolism , Polymerase Chain Reaction , Rats , Rats, Zucker
17.
Front Physiol ; 10: 674, 2019.
Article in English | MEDLINE | ID: mdl-31191361

ABSTRACT

In humans, alterations in bone metabolism have been associated with myopathies. We postulate the hypothesis that perhaps similar pathologies can also be associated in modern chickens. Hence, this study aimed to assess the fat infiltration in bone marrow and its repercussion on broiler chicken affected by Wooden Breast (WB) myopathy. Ten Cobb 500 live birds with extreme rigidity of the Pectoralis major (PM) muscle were selected as WB affected chickens by physical examination of the muscle at 49 days of age, whereas ten chickens healthy with no physical signs of hardness in the breast muscle were considered to be unaffected. Macroscopic lesions in affected chickens included areas of firm and inflamed muscle with pale appearance, hemorrhaging, and viscous exudate on the surface. Bone marrow and sections of the PM muscle were collected and analyzed for light microscopy. Additionally, transmission electron microscopy was conducted in affected or unaffected muscle. Chickens affected with WB showed significant reductions (P < 0.05) in femur diameter, calcium, and phosphorous percentage but increased breast weight, compression force and filet thickness when compared with non-affected chickens. Interestingly, bone marrow from WB chicken had subjectively, more abundant infiltration of adipose tissue, when compared with non-affected chickens. Histology of the Pectoralis major of birds with WB showed abundant infiltration of adipose tissue, muscle fibers degeneration with necrosis and infiltration of heterophils and mononuclear cells, connective tissue proliferation, and vasculitis. Ultrastructural changes of WB muscle revealed lack definition of bands in muscle tissue, or any normal ultrastructural anatomy such as myofibrils. The endomysium components were necrotic, and in some areas, the endomysium was notable only as a string of necrotic tissue between degraded myofibrils. The fascia appeared hypertrophied, with large areas of necrosis and myofiber without structural identity with degraded mitochondria adjacent to the disrupted muscle tissue. As far as we know, this is the first study that describes a subjective increase in adipose tissue in the bone marrow of chickens affected with WB when compared with non-affected chickens, and reduced bone mineralization.

18.
J Anim Sci ; 97(8): 3169-3179, 2019 Jul 30.
Article in English | MEDLINE | ID: mdl-31247079

ABSTRACT

Oxidative stress is an unavoidable consequence of aerobic metabolism. Whereas high amounts of mitochondrial reactive oxygen species (ROS) can cause oxidation, low levels play important roles in signal transduction. In a Pedigree male (PedM) broiler model of feed efficiency (FE), the low FE phenotype was characterized by increased ROS in isolated mitochondria (muscle, liver, and duodenum) with a pervasive protein oxidation in mitochondria and tissues. Subsequent proteogenomic studies in muscle revealed evidence of enhanced mitoproteome abundance, enhanced mitochondrial phosphocreatine shuttling expression, and enhanced ribosome assembly in the high FE phenotype. Surprisingly, an enhanced infrastructure would foster greater repair of damaged proteins or organelles through the autophagy and proteosome pathways in the high FE phenotype. Although protein and organelle degradation, recycling, and reconstruction would be energetically expensive, it is possible that energy invested into maintaining optimal function of proteins and organelles contributes to cellular efficiency in the high FE phenotype. New findings in mitochondrial physiology have been reported in the last several years. Reverse electron transport (RET), once considered an artifact of in vitro conditions, now is recognized to play significant roles in inflammation, ischemia-reperfusion, muscle differentiation, and energy utilization. A topology of ROS production indicates that ROS derived from Complex I of the respiratory chain primarily causes oxidation, whereas ROS generated from Complex III are primarily involved in cell signaling. It is also apparent that there is a constant fission and fusion process that mitochondria undergo that help maintain optimal mitochondrial function and enables mitochondria to adjust to periods of nutrient limitation and nutrient excess. Understanding the balancing act that mitochondria play in health and disease will continue to be a vital biological component in health-production efficiency and disease in commercial animal agriculture.


Subject(s)
Chickens/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Animal Feed , Animals , Male , Oxidation-Reduction , Phenotype , Signal Transduction
19.
Front Genet ; 10: 480, 2019.
Article in English | MEDLINE | ID: mdl-31164906

ABSTRACT

The objective of this study was to evaluate the of intestinal permeability and liver bacterial translocation (BT) across a modern commercial broiler, a commercial broiler of 1995 genetics, and an unselected Jungle Fowl line. Modern 2015 (MB2015) broiler chicken, random bred line initiated from 1995 (RB1995), and the Giant Jungle fowl (JF). Chickens were randomly allocated to four different dietary treatments. Dietary treatments were (1) a control corn-based diet throughout the trial [corn-corn (C-C)]; (2) an early phase malnutrition diet where chicks received a rye-based diet for 10 days, and then switched to the control diet [rye-corn (R-C)]; (3) a malnutrition rye-diet that was fed throughout the trial [rye-rye (R-R)]; and (4) a late phase malnutrition diet where chicks received the control diet for 10 days, and then switched to the rye diet for the last phase [corn-rye (C-R)]. Paracellular permeability was evaluated using fluorescein isothiocyanate dextran (FITC-D). Liver BT was also evaluated. MB2015 and RB1995 consuming the rye-based diet showed increase serum levels of FITC-D when compared to the corn-fed chickens (P < 0.05). Overall, MB2015 appeared to have higher enteric permeability than the JF. To our knowledge, this would be the first paper to evaluate the effect of compensatory growth on intestinal permeability and liver BT. Further studies to evaluate microbiome and inflammatory markers in these chicken models are currently being evaluated.

20.
Front Physiol ; 10: 126, 2019.
Article in English | MEDLINE | ID: mdl-30873041

ABSTRACT

Background: Feed efficiency (FE, gain to feed) is an important genetic trait as 70% of the cost of raising animals is due to feed costs. The objective of this study was to determine mRNA expression of genes involved in muscle development and hypertrophy, and the insulin receptor-signaling pathway in breast muscle associated with the phenotypic expression of FE. Methods: Breast muscle samples were obtained from Pedigree Male (PedM) broilers (8 to 10 week old) that had been individually phenotyped for FE between 6 and 7 week of age. The high FE group gained more weight but consumed the same amount of feed compared to the low FE group. Total RNA was extracted from breast muscle (n = 6 per group) and mRNA expression of target genes was determined by real-time quantitative PCR. Results: Targeted gene expression analysis in breast muscle of the high FE phenotype revealed that muscle development may be fostered in the high FE PedM phenotype by down-regulation several components of the myostatin signaling pathway genes combined with upregulation of genes that enhance muscle formation and growth. There was also evidence of genetic architecture that would foster muscle protein synthesis in the high FE phenotype. A clear indication of differences in insulin signaling between high and low FE phenotypes was not apparent in this study. Conclusion: These findings indicate that a gene expression architecture is present in breast muscle of PedM broilers exhibiting high FE that would support enhanced muscle development-differentiation as well as protein synthesis compared to PedM broilers exhibiting low FE.

SELECTION OF CITATIONS
SEARCH DETAIL
...