Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Hum Mutat ; 42(11): 1367-1383, 2021 11.
Article in English | MEDLINE | ID: mdl-34298585

ABSTRACT

The congenital sideroblastic anemias (CSAs) are a heterogeneous group of inherited disorders of erythropoiesis characterized by pathologic deposits of iron in the mitochondria of developing erythroblasts. Mutations in the mitochondrial glycine carrier SLC25A38 cause the most common recessive form of CSA. Nonetheless, the disease is still rare, there being fewer than 70 reported families. Here we describe the clinical phenotype and genotypes of 31 individuals from 24 families, including 11 novel mutations. We also review the spectrum of reported mutations and genotypes associated with the disease, describe the unique localization of missense mutations in transmembrane domains and account for the presence of several alleles in different populations.


Subject(s)
Anemia, Sideroblastic/congenital , Genotype , Mitochondrial Membrane Transport Proteins/genetics , Mutation , Phenotype , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male
2.
J Clin Invest ; 130(10): 5245-5256, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32634119

ABSTRACT

The congenital sideroblastic anemias (CSAs) can be caused by primary defects in mitochondrial iron-sulfur (Fe-S) cluster biogenesis. HSCB (heat shock cognate B), which encodes a mitochondrial cochaperone, also known as HSC20 (heat shock cognate protein 20), is the partner of mitochondrial heat shock protein A9 (HSPA9). Together with glutaredoxin 5 (GLRX5), HSCB and HSPA9 facilitate the transfer of nascent 2-iron, 2-sulfur clusters to recipient mitochondrial proteins. Mutations in both HSPA9 and GLRX5 have previously been associated with CSA. Therefore, we hypothesized that mutations in HSCB could also cause CSA. We screened patients with genetically undefined CSA and identified a frameshift mutation and a rare promoter variant in HSCB in a female patient with non-syndromic CSA. We found that HSCB expression was decreased in patient-derived fibroblasts and K562 erythroleukemia cells engineered to have the patient-specific promoter variant. Furthermore, gene knockdown and deletion experiments performed in K562 cells, zebrafish, and mice demonstrate that loss of HSCB results in impaired Fe-S cluster biogenesis, a defect in RBC hemoglobinization, and the development of siderocytes and more broadly perturbs hematopoiesis in vivo. These results further affirm the involvement of Fe-S cluster biogenesis in erythropoiesis and hematopoiesis and define HSCB as a CSA gene.


Subject(s)
Anemia, Sideroblastic/genetics , Molecular Chaperones/genetics , Mutation , Adolescent , Anemia, Sideroblastic/congenital , Anemia, Sideroblastic/metabolism , Animals , Child , DNA Mutational Analysis , Female , Frameshift Mutation , Gene Knockdown Techniques , Humans , Iron-Sulfur Proteins/deficiency , Iron-Sulfur Proteins/genetics , K562 Cells , Male , Mice , Mice, Knockout , Molecular Chaperones/metabolism , Pedigree , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Young Adult , Zebrafish
3.
Clin Case Rep ; 6(9): 1841-1844, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30214775

ABSTRACT

The case of an infant girl with severe congenital sideroblastic anemia associated with a novel molecular defect in mitochondrial transporter SLC25A38 is presented. Her transfusion dependence was fully reversed following allogeneic hematopoietic stem cell transplantation using a modified reduced-intensity conditioning regimen, and she remains healthy 5 years posttransplant.

5.
Haematologica ; 103(12): 2008-2015, 2018 12.
Article in English | MEDLINE | ID: mdl-30026338

ABSTRACT

YARS2 variants have previously been described in patients with myopathy, lactic acidosis and sideroblastic anemia 2 (MLASA2). YARS2 encodes the mitochondrial tyrosyl-tRNA synthetase, which is responsible for conjugating tyrosine to its cognate mt-tRNA for mitochondrial protein synthesis. Here we describe 14 individuals from 11 families presenting with sideroblastic anemia and YARS2 variants that we identified using a sideroblastic anemia gene panel or exome sequencing. The phenotype of these patients ranged from MLASA to isolated congenital sideroblastic anemia. As in previous cases, inter- and intra-familial phenotypic variability was observed, however, this report includes the first cases with isolated sideroblastic anemia and patients with biallelic YARS2 variants that have no clinically ascertainable phenotype. We identified ten novel YARS2 variants and three previously reported variants. In vitro amino-acylation assays of five novel missense variants showed that three had less effect on the catalytic activity of YARS2 than the most commonly reported variant, p.(Phe52Leu), associated with MLASA2, which may explain the milder phenotypes in patients with these variants. However, the other two missense variants had a more severe effect on YARS2 catalytic efficiency. Several patients carried the common YARS2 c.572 G>T, p.(Gly191Val) variant (minor allele frequency =0.1259) in trans with a rare deleterious YARS2 variant. We have previously shown that the p.(Gly191Val) variant reduces YARS2 catalytic activity. Consequently, we suggest that biallelic YARS2 variants, including severe loss-of-function alleles in trans of the common p.(Gly191Val) variant, should be considered as a cause of isolated congenital sideroblastic anemia, as well as the MLASA syndromic phenotype.


Subject(s)
Acidosis, Lactic/genetics , Anemia, Sideroblastic/genetics , Genetic Diseases, X-Linked/genetics , Germ-Line Mutation , MELAS Syndrome/genetics , Mitochondrial Proteins/genetics , Tyrosine-tRNA Ligase/genetics , Acidosis, Lactic/enzymology , Adolescent , Anemia, Sideroblastic/enzymology , Female , Genetic Association Studies , Genetic Diseases, X-Linked/enzymology , Humans , Infant , MELAS Syndrome/enzymology , Male , Middle Aged , Mutation, Missense , Young Adult
6.
Blood ; 128(15): 1913-1917, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27488349

ABSTRACT

The congenital sideroblastic anemias (CSAs) are a heterogeneous group of inherited blood disorders characterized by pathological mitochondrial iron deposition in erythroid precursors. Each known cause has been attributed to a mutation in a protein associated with heme biosynthesis, iron-sulfur cluster biogenesis, mitochondrial translation, or a component of the mitochondrial respiratory chain. Here, we describe a recurring mutation, c.276_278del, p.F93del, in NDUFB11, a mitochondrial respiratory complex I-associated protein encoded on the X chromosome, in 5 males with a variably syndromic, normocytic CSA. The p.F93del mutation results in respiratory insufficiency and loss of complex I stability and activity in patient-derived fibroblasts. Targeted introduction of this allele into K562 erythroleukemia cells results in a proliferation defect with minimal effect on erythroid differentiation potential, suggesting the mechanism of anemia in this disorder.


Subject(s)
Anemia, Sideroblastic/genetics , Base Sequence , Chromosomes, Human, X/genetics , Electron Transport Complex I/genetics , Genetic Diseases, X-Linked/genetics , Sequence Deletion , Adolescent , Adult , Aged , Anemia, Sideroblastic/metabolism , Anemia, Sideroblastic/pathology , Child , Child, Preschool , Chromosomes, Human, X/metabolism , Electron Transport Complex I/metabolism , Female , Genetic Diseases, X-Linked/metabolism , Humans , K562 Cells , Male , Middle Aged
7.
Blood ; 126(25): 2734-8, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26491070

ABSTRACT

The congenital sideroblastic anemias (CSAs) are relatively uncommon diseases characterized by defects in mitochondrial heme synthesis, iron-sulfur (Fe-S) cluster biogenesis, or protein synthesis. Here we demonstrate that mutations in HSPA9, a mitochondrial HSP70 homolog located in the chromosome 5q deletion syndrome 5q33 critical deletion interval and involved in mitochondrial Fe-S biogenesis, result in CSA inherited as an autosomal recessive trait. In a fraction of patients with just 1 severe loss-of-function allele, expression of the clinical phenotype is associated with a common coding single nucleotide polymorphism in trans that correlates with reduced messenger RNA expression and results in a pseudodominant pattern of inheritance.


Subject(s)
Anemia, Sideroblastic/genetics , Genetic Diseases, X-Linked/genetics , HSP70 Heat-Shock Proteins/genetics , Mitochondrial Proteins/genetics , Adult , Aged , Base Sequence , DNA Mutational Analysis , Female , Genotype , Humans , Infant , Infant, Newborn , Male , Middle Aged , Molecular Sequence Data , Mutation , Oligonucleotide Array Sequence Analysis , Pedigree , Polymorphism, Single Nucleotide , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Young Adult
8.
Blood ; 124(18): 2867-71, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25193871

ABSTRACT

Mutations in genes encoding proteins that are involved in mitochondrial heme synthesis, iron-sulfur cluster biogenesis, and mitochondrial protein synthesis have previously been implicated in the pathogenesis of the congenital sideroblastic anemias (CSAs). We recently described a syndromic form of CSA associated with B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Here we demonstrate that SIFD is caused by biallelic mutations in TRNT1, the gene encoding the CCA-adding enzyme essential for maturation of both nuclear and mitochondrial transfer RNAs. Using budding yeast lacking the TRNT1 homolog, CCA1, we confirm that the patient-associated TRNT1 mutations result in partial loss of function of TRNT1 and lead to metabolic defects in both the mitochondria and cytosol, which can account for the phenotypic pleiotropy.


Subject(s)
Anemia, Sideroblastic/congenital , Anemia, Sideroblastic/genetics , Developmental Disabilities/complications , Fever/complications , Genetic Diseases, X-Linked/genetics , Immunologic Deficiency Syndromes/complications , Mutation/genetics , RNA Nucleotidyltransferases/genetics , Alleles , Anemia, Sideroblastic/complications , Anemia, Sideroblastic/enzymology , Developmental Disabilities/genetics , Fever/genetics , Genetic Diseases, X-Linked/complications , Genetic Diseases, X-Linked/enzymology , HEK293 Cells , Humans , Immunologic Deficiency Syndromes/genetics
9.
Hematol Oncol Clin North Am ; 28(4): 653-70, v, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25064706

ABSTRACT

Sideroblastic anemias (SAs) may be acquired or congenital and share the features of disrupted utilization of iron in the erythroblast, ineffective erythropoiesis, and variable systemic iron overload. Congenital forms can have associated syndromic features or be nonsyndromic, and many of them have mutations in genes encoding proteins involved in heme biosynthesis, iron-sulfur cluster biogenesis, or mitochondrial protein synthesis. The mechanism(s) for the acquired clonal SA is undefined and is under intense study. Precise diagnosis of these disorders rests on careful clinical and laboratory evaluation, including molecular analysis. Supportive treatments usually provide for a favorable prognosis and often for normal survival.


Subject(s)
Anemia, Sideroblastic/diagnosis , Anemia, Sideroblastic/therapy , Anemia, Sideroblastic/complications , Disease Management , Humans , Iron Overload/etiology
10.
Am J Hematol ; 89(3): 315-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24166784

ABSTRACT

X-linked sideroblastic anemia (XLSA) is the most common form of congenital sideroblastic anemia. In affected males, it is uniformly associated with partial loss-of-function missense mutations in the erythroid-specific heme biosynthesis protein 5-aminolevulinate synthase 2 (ALAS2). Here, we report five families with XLSA owing to mutations in a GATA transcription factor binding site located in a transcriptional enhancer element in intron 1 of the ALAS2 gene. As such, this study defines a new class of mutations that should be evaluated in patients undergoing genetic testing for a suspected diagnosis of XLSA.


Subject(s)
5-Aminolevulinate Synthetase/genetics , Anemia, Sideroblastic/genetics , Enhancer Elements, Genetic/genetics , GATA Transcription Factors/metabolism , Genetic Diseases, X-Linked/genetics , Introns/genetics , Mutation , Adult , Aged , Anemia, Sideroblastic/blood , Binding Sites , Europe/ethnology , Female , Genetic Diseases, X-Linked/blood , Genotype , Humans , Male , Middle Aged , Pedigree , Young Adult
11.
Blood ; 122(1): 112-23, 2013 Jul 04.
Article in English | MEDLINE | ID: mdl-23553769

ABSTRACT

Congenital sideroblastic anemias (CSAs) are a heterogeneous group of inherited disorders identified by pathological erythroid precursors with perinuclear mitochondrial iron deposition in bone marrow. An international collaborative group of physicians and laboratory scientists collated clinical information on cases of CSA lacking known causative mutations, identifying a clinical subgroup of CSA associated with B immunodeficiency, periodic fevers, and development delay. Twelve cases from 10 families were identified. Median age at presentation was 2 months. Anemia at diagnosis was sideroblastic, typically severe (median hemoglobin, 7.1 g/dL) and markedly microcytic (median mean corpuscular volume, 62.0 fL). Clinical course involved recurrent febrile illness and gastrointestinal disturbance, lacking an infective cause. Investigation revealed B-cell lymphopenia (CD19⁺ range, 0.016-0.22 × 109/L) and panhypogammaglobulinemia in most cases. Children displayed developmental delay alongside variable neurodegeneration, seizures, cerebellar abnormalities, sensorineural deafness, and other multisystem features. Most required regular blood transfusion, iron chelation, and intravenous immunoglobulin replacement. Median survival was 48 months, with 7 deaths caused by cardiac or multiorgan failure. One child underwent bone marrow transplantation aged 9 months, with apparent cure of the hematologic and immunologic manifestations. We describe and define a novel CSA and B-cell immunodeficiency syndrome with additional features resembling a mitochondrial cytopathy. The molecular etiology is under investigation.


Subject(s)
Anemia, Sideroblastic/diagnosis , B-Lymphocytes/immunology , Developmental Disabilities/diagnosis , Familial Mediterranean Fever/diagnosis , Immunologic Deficiency Syndromes/diagnosis , Anemia, Sideroblastic/blood , Anemia, Sideroblastic/genetics , Developmental Disabilities/blood , Developmental Disabilities/genetics , Familial Mediterranean Fever/blood , Familial Mediterranean Fever/genetics , Female , Hearing Loss, Sensorineural/blood , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , Humans , Immunologic Deficiency Syndromes/blood , Immunologic Deficiency Syndromes/genetics , Infant , Infant, Newborn , Male , Nervous System Diseases/blood , Nervous System Diseases/diagnosis , Nervous System Diseases/genetics , Pedigree , Phenotype , Syndrome
13.
Pediatr Blood Cancer ; 54(2): 273-8, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19731322

ABSTRACT

BACKGROUND: Sideroblastic anemias are heterogeneous congenital and acquired bone marrow disorders characterized by pathologic iron deposits in mitochondria of erythroid precursors. Among the congenital sideroblastic anemias (CSAs), the most common form is X-linked sideroblastic anemia, due to mutations in 5-aminolevulinate synthase (ALAS2). A novel autosomal recessive CSA, caused by mutations in the erythroid specific mitochondrial transporter SLC25A38, was recently defined. Other known etiologies include mutations in genes encoding the thiamine transporter SLC19A2, the RNA-modifying enzyme pseudouridine synthase 1 (PUS1), a mitochondrial ATP-binding cassette transporter (ABCB7), glutaredoxin 5 (GLRX5), as well as mitochondrial DNA deletions. Despite these known diverse causes, in a substantial portion of CSA cases a presumed genetic defect remains unknown. PROCEDURE: In the context of the recent discovery of SLC25A38 as a major novel cause, we systematically analyzed a large cohort of previously unreported CSA patients. Sixty CSA probands (28 females, 32 males) were examined for ALAS2, SLC25A38, PUS1, GLRX5, and ABCB7 mutations. SLC19A2 and mitochondrial DNA were only analyzed if characteristic syndromic features were apparent. RESULTS: Twelve probands had biallelic mutations in SLC25A38. Seven ALAS2 mutations were detected in eight sporadic CSA cases, two being novel. We also identified a novel homozygous null PUS1 mutation and novel mitochondrial DNA deletions in two patients with Pearson syndrome. No mutations were encountered in GLRX5, ABCB7, or SLC19A2. CONCLUSIONS: The remaining undefined probands (43%) can be grouped according to gender, family, and clinical characteristics, suggesting novel X-linked and autosomal recessive forms of CSA.


Subject(s)
Anemia, Sideroblastic/epidemiology , Anemia, Sideroblastic/genetics , Genetic Heterogeneity , Mutation , 5-Aminolevulinate Synthetase/genetics , ATP-Binding Cassette Transporters/genetics , Adolescent , Adult , Anemia, Sideroblastic/congenital , Child , Child, Preschool , Female , Glutaredoxins/genetics , Humans , Hydro-Lyases/genetics , Infant , Male , Membrane Transport Proteins/genetics , Middle Aged , Mitochondrial Membrane Transport Proteins/genetics , United States/epidemiology
14.
Nat Genet ; 41(6): 651-3, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19412178

ABSTRACT

The sideroblastic anemias are a heterogeneous group of congenital and acquired hematological disorders whose morphological hallmark is the presence of ringed sideroblasts--bone marrow erythroid precursors containing pathologic iron deposits within mitochondria. Here, by positional cloning, we define a previously unknown form of autosomal recessive nonsyndromic congenital sideroblastic anemia, associated with mutations in the gene encoding the erythroid specific mitochondrial carrier family protein SLC25A38, and demonstrate that SLC25A38 is important for the biosynthesis of heme in eukaryotes.


Subject(s)
Anemia, Sideroblastic/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mutation , Animals , Carrier State , Family , Fishes/genetics , Heme/biosynthesis , Humans , Phenotype , Yeasts/genetics
15.
Am J Med Sci ; 337(4): 256-8, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19365170

ABSTRACT

BACKGROUND: : Acquired copper deficiency in adults leads to hematological and neurological manifestations that mimic vitamin B12 deficiency. A significant number of patients with copper deficiency syndrome have a history of gastric surgery, often remote. We sought to determine whether copper deficiency is present in a population of individuals with longstanding partial gastric resection. METHODS: : Serum copper, ceruloplasmin, and zinc levels were determined in 20 patients with a history of partial gastric resection and 50 controls, randomly selected from the Oklahoma City Veterans Affairs Medical Center electronic database. RESULTS: : Hypocupremia and symptoms of copper deficiency were detected in patients with partial gastric resection in contrast to controls (3/20 versus 0/50, P = 0.02). Serum copper and ceruloplasmin levels were significantly lower in individuals with partial gastric resection than in controls (P = 0.04 and P = 0.001, respectively). The mean interval between gastric surgery and testing was 20.7 years. CONCLUSIONS: : Our results indicate that a significant number of individuals with longstanding history of partial gastric resection have undiagnosed hypocupremia. Screening for copper deficiency after gastric surgery may prevent the development of hematological and neurological complications in these patients.


Subject(s)
Copper/deficiency , Gastrectomy/adverse effects , Postoperative Complications/blood , Adult , Aged , Aged, 80 and over , Ceruloplasmin/metabolism , Copper/administration & dosage , Dietary Supplements , Humans , Male , Middle Aged , Vitamin B 12 Deficiency/blood
18.
Exp Hematol ; 36(5): 577-86, 2008 May.
Article in English | MEDLINE | ID: mdl-18439489

ABSTRACT

OBJECTIVE: To determine the frequency and spectrum of somatic mutations of mitochondrial DNA (mtDNA) in bone marrow of patients with myelodysplastic syndrome (MDS). MATERIALS AND METHODS: Analysis included 104 patients with MDS (24 refractory anemia, 32 refractory anemia with ringed sideroblasts, 34 refractory anemia with excess of blasts, 7 refractory anemia with excess of blasts in transformation to acute leukemia, and 7 chronic myelo-monocytic leukemia), 3 patients with acute myeloid leukemia from MDS, and 36 patients with myeloproliferative disease (23 chronic myeloid leukemia, 9 polycythemia vera, 4 idiopathic myelofibrosis). Mutation scanning was performed using heteroduplex analysis with denaturing high-performance liquid chromatography (dHPLC). The entire mitochondrial genome was amplified in 67 overlapping polymerase chain reaction fragments carefully optimized regarding DNA melting profiles. Abnormal dHPLC findings were confirmed by DNA sequencing. RESULTS: Heteroplasmic mtDNA mutations, mostly transitions, were identified in 56% of MDS and 44% of myeloproliferative disorders patients. In MDS, mutation frequency increased with age and more-advanced disease. Mutational spectra showed no hot spots and were similar in different types of MDS. Heteroplasmic mutations generally did not represent known polymorphisms, and about half of them affected conserved amino acids or nucleotides. Mutations were less frequent in protein encoding genes (50 per 10(6) base pairs) than other mitochondrial genes (transfer RNAs, ribosomal RNAs, and control region; about 80 per 10(6) base pairs). CONCLUSIONS: As mitochondria often show ultrastructural abnormalities in MDS, including pathological iron accumulation, mitochondrial dysfunction may contribute to MDS pathology. We found a high frequency of acquired mtDNA mutations in MDS. However, their functional importance remains unclear, considering that genotype correlates poorly with phenotype in mitochondrial diseases. The clonally expanded mtDNA mutations in MDS support the concept of age-related damage to mtDNA in hematopoietic stem cells.


Subject(s)
DNA, Mitochondrial/genetics , Myelodysplastic Syndromes/genetics , Adult , Age Factors , Aged , Aged, 80 and over , Bone Marrow/pathology , Chromatography, High Pressure Liquid/methods , DNA Mutational Analysis , Disease Progression , Humans , Middle Aged , Mutation , Polymerase Chain Reaction/methods , Sensitivity and Specificity
19.
Am J Hematol ; 82(4): 288-90, 2007 Apr.
Article in English | MEDLINE | ID: mdl-16986134

ABSTRACT

Clinical similarities between vitamin B(12) and copper deficiencies prompted us to investigate if hypocupremia is present in patients receiving vitamin B(12) supplementation. Our pilot study results indicate that a significant number of elderly patients with prior diagnosis of vitamin B(12) deficiency have also undiagnosed hypocupremia.


Subject(s)
Ceruloplasmin/analysis , Copper/deficiency , Neurodegenerative Diseases/blood , Vitamin B 12 Deficiency , Aged , Aged, 80 and over , Case-Control Studies , Female , Humans , Male , Middle Aged , Neurodegenerative Diseases/etiology , Pilot Projects , Vitamin B 12/blood , Vitamin B 12 Deficiency/blood , Vitamin B 12 Deficiency/complications
20.
Am J Hematol ; 81(10): 760-7, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16838333

ABSTRACT

We evaluated and treated four white adults (one man, three women) who had iron overload associated with daily ingestion of iron supplements for 7, 15, 35, and 61 years, respectively. We performed HFE mutation analysis to detect C282Y, H63D, and S65C in each patient; in two patients, HFE exons were sequenced. In two patients, direct sequencing was performed to detect coding region mutations of TFR2, HAMP, FPN1, HJV, and ALAS2. Patients 1-4 ingested 153, 547, 1,341, and 4,898 g of inorganic iron as supplements. Patient 1 had hemochromatosis, HFE C282Y homozygosity, and beta-thalassemia minor. Patient 2 had spherocytosis and no HFE coding region mutations. Patient 3 had no anemia, a normal HFE genotype, and no coding region mutations in HAMP, FPN1, HJV, or ALAS2; she was heterozygous for the TFR2 coding region mutation V583I (nt 1,747 G-->A, exon 15). Patient 4 had no anemia and no coding region mutations in HFE, TFR2, HAMP, FPN1, HJV, or ALAS2. Iron removed by phlebotomy was 32.4, 10.4, 15.2, and 4.0 g, respectively. There was a positive correlation of log(10) serum ferritin and the quantity of iron removed by phlebotomy (P = 0.0371). Estimated absorption of iron from supplements in patients 1-4 was 20.9%, 1.9%, 1.1%, and 0.08%. We conclude that the clinical phenotypes and hemochromatosis genotypes of adults who develop iron overload after ingesting iron supplements over long periods are heterogeneous. Therapeutic phlebotomy is feasible and effective, and would prevent complications of iron overload.


Subject(s)
Dietary Supplements/adverse effects , Hemochromatosis/chemically induced , Hemochromatosis/genetics , Histocompatibility Antigens Class I/genetics , Iron Overload/diagnosis , Iron/adverse effects , Membrane Proteins/genetics , Adult , Aged , Drug Administration Schedule , Female , Genotype , Hemochromatosis/diagnosis , Hemochromatosis Protein , Humans , Iron/administration & dosage , Iron Overload/chemically induced , Iron Overload/genetics , Male , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...