Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ChemMedChem ; 19(3): e202300493, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38126619

ABSTRACT

Amidinoureas are an understudied class of molecules with unique structural properties and biological activities. A simple methodology has been developed for the synthesis of aliphatic substituted amidinoureas via unexpected cycle opening of benzothiazolo-1,3,5-triazine-2-ones and transamination reaction of N-(N-(benzo[d]thiazol-2-yl)carbamimidoyl)aniline-1-carboxamide in good yields. A novel series of amidinoureas derivatives was designed, synthesized, and evaluated for its antiproliferative activity on an aggressive metastatic melanoma A375 cell line model. This evaluation reveals antiproliferative activities in the low micromolar range and establishes a first structure-activity relationship. In addition, analogues selected for their structural diversity were assayed on a panel of cancer cell lines through the DTP-NCI60, on which they showed effectiveness on various cancer types, with promising activities on melanoma cells for two hit compounds. This work paves the way for further optimization of this family of compounds towards the development of potent antimelanoma agents.


Subject(s)
Antineoplastic Agents , Guanidine/analogs & derivatives , Melanoma , Urea/analogs & derivatives , Humans , Cell Line, Tumor , Antineoplastic Agents/chemistry , Triazines/chemistry , Structure-Activity Relationship , Cell Proliferation , Drug Screening Assays, Antitumor , Molecular Structure
2.
Cell Death Dis ; 12(1): 64, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431809

ABSTRACT

In the search of biguanide-derived molecules against melanoma, we have discovered and developed a series of bioactive products and identified the promising new compound CRO15. This molecule exerted anti-melanoma effects on cells lines and cells isolated from patients including the ones derived from tumors resistant to BRAF inhibitors. Moreover, CRO15 was able to decrease viability of cells lines from a broad range of cancer types. This compound acts by two distinct mechanisms. First by activating the AMPK pathway induced by a mitochondrial disorder. Second by inhibition of MELK kinase activity, which induces cell cycle arrest and activation of DNA damage repair pathways by p53 and REDD1 activation. All of these mechanisms activate autophagic and apoptotic processes resulting in melanoma cell death. The strong efficacy of CRO15 to reduce the growth of melanoma xenograft sensitive or resistant to BRAF inhibitors opens interesting perspective.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Melanoma/genetics , Protein Serine-Threonine Kinases/metabolism , Cell Death , Cell Proliferation , Humans , Melanoma/pathology , Signal Transduction
4.
Cell Rep ; 29(3): 573-588.e7, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31618628

ABSTRACT

BRAF fusions are detected in numerous neoplasms, but their clinical management remains unresolved. We identified six melanoma lines harboring BRAF fusions representative of the clinical cases reported in the literature. Their unexpected heterogeneous responses to RAF and MEK inhibitors could be categorized upon specific features of the fusion kinases. Higher expression level correlated with resistance, and fusion partners containing a dimerization domain promoted paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway and hyperproliferation in response to first- and second-generation RAF inhibitors. By contrast, next-generation αC-IN/DFG-OUT RAF inhibitors blunted paradoxical activation across all lines and had their therapeutic efficacy further increased in vitro and in vivo by combination with MEK inhibitors, opening perspectives in the clinical management of tumors harboring BRAF fusions.


Subject(s)
Drug Resistance, Neoplasm/genetics , Melanoma/pathology , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Proteins B-raf/genetics , Animals , Dimerization , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Intracellular Signaling Peptides and Proteins/genetics , Melanoma/genetics , Mice , Mice, Nude , Mitogen-Activated Protein Kinases/metabolism , Oncogene Proteins, Fusion/antagonists & inhibitors , Oncogene Proteins, Fusion/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Kinase Inhibitors/pharmacology , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction , Vemurafenib/pharmacology , ras Proteins/genetics , ras Proteins/metabolism
5.
Cancer Cell ; 34(1): 56-68.e9, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29990501

ABSTRACT

Loss of the CDKN2A tumor suppressor is associated with melanoma metastasis, but the mechanisms connecting the phenomena are unknown. Using CRISPR-Cas9 to engineer a cellular model of melanoma initiation from primary human melanocytes, we discovered that a lineage-restricted transcription factor, BRN2, is downstream of CDKN2A and directly regulated by E2F1. In a cohort of melanocytic tumors that capture distinct progression stages, we observed that CDKN2A loss coincides with both the onset of invasive behavior and increased BRN2 expression. Loss of the CDKN2A protein product p16INK4A permitted metastatic dissemination of human melanoma lines in mice, a phenotype rescued by inhibition of BRN2. These results demonstrate a mechanism by which CDKN2A suppresses the initiation of melanoma invasion through inhibition of BRN2.


Subject(s)
Cell Movement , Cyclin-Dependent Kinase Inhibitor p16/genetics , Homeodomain Proteins/genetics , Loss of Heterozygosity , Lung Neoplasms/genetics , Melanocytes/metabolism , Melanoma/genetics , POU Domain Factors/genetics , Skin Neoplasms/genetics , Transcriptional Activation , Animals , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p16/metabolism , E2F1 Transcription Factor/genetics , E2F1 Transcription Factor/metabolism , Female , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/metabolism , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Male , Melanocytes/pathology , Melanoma/metabolism , Melanoma/secondary , Mice, Inbred NOD , Neoplasm Invasiveness , POU Domain Factors/metabolism , Point Mutation , Proto-Oncogene Proteins B-raf/genetics , Signal Transduction , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
6.
Oncologist ; 23(9): 998-1003, 2018 09.
Article in English | MEDLINE | ID: mdl-29622700

ABSTRACT

Biliary tract cancers such as cholangiocarcinoma represent a heterogeneous group of cancers that can be difficult to diagnose. Recent comprehensive genomic analyses in large cholangiocarcinoma cohorts have defined important molecular subgroups within cholangiocarcinoma that may relate to anatomic location and etiology [1], [2], [3], [4] and may predict responsiveness to targeted therapies in development [5], [6], [7]. These emerging data highlight the potential for tumor genomics to inform diagnosis and treatment options in this challenging tumor type. We report the case of a patient with a germline BRCA1 mutation who presented with a cholangiocarcinoma driven by the novel YWHAZ-BRAF fusion. Hybrid capture-based DNA sequencing and copy number analysis performed as part of clinical care demonstrated that two later-occurring tumors were clonally derived from the primary cholangiocarcinoma rather than distinct new primaries, revealing an unusual pattern of late metachronous metastasis. We discuss the clinical significance of these genetic alterations and their relevance to therapeutic strategies. KEY POINTS: Hybrid capture-based next-generation DNA sequencing assays can provide diagnostic clarity in patients with unusual patterns of metastasis and recurrence in which the pathologic diagnosis is ambiguous.To our knowledge, this is the first reported case of a YWHAZ-BRAF fusion in pancreaticobiliary cancer, and a very rare case of cholangiocarcinoma in the setting of a germline BRCA1 mutation.The patient's BRCA1 mutation and YWHAZ-BRAF fusion constitute potential targets for future therapy.


Subject(s)
BRCA1 Protein/genetics , Cholangiocarcinoma/genetics , DNA Copy Number Variations/genetics , Proto-Oncogene Proteins B-raf/genetics , Humans , Neoplasm Metastasis
7.
J Pathol ; 240(3): 282-290, 2016 11.
Article in English | MEDLINE | ID: mdl-27477320

ABSTRACT

Oncogenic fusions in TRK family receptor tyrosine kinases have been identified in several cancers and can serve as therapeutic targets. We identified ETV6-NTRK3, MYO5A-NTRK3 and MYH9-NTRK3 fusions in Spitz tumours, and demonstrated that NTRK3 fusions constitutively activate the mitogen-activated protein kinase, phosphoinositide 3-kinase and phospholipase Cγ1 pathways in melanocytes. This signalling was inhibited by DS-6051a, a small-molecule inhibitor of NTRK1/2/3 and ROS1. NTRK3 fusions expand the range of oncogenic kinase fusions in melanocytic neoplasms and offer targets for a small subset of melanomas for which no targeted options currently exist. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Discoidin Domain Receptor 2/genetics , Molecular Motor Proteins/genetics , Myosin Heavy Chains/genetics , Myosin Type V/genetics , Nevus, Epithelioid and Spindle Cell/enzymology , Proto-Oncogene Proteins c-ets/genetics , Repressor Proteins/genetics , Skin Neoplasms/enzymology , Adolescent , Adult , Aged , Child , Child, Preschool , Comparative Genomic Hybridization , Discoidin Domain Receptor 2/metabolism , Female , Humans , Male , Melanoma/enzymology , Melanoma/genetics , Melanoma/pathology , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Molecular Motor Proteins/metabolism , Myosin Heavy Chains/metabolism , Myosin Type V/metabolism , Nevus, Epithelioid and Spindle Cell/genetics , Nevus, Epithelioid and Spindle Cell/pathology , Oncogene Fusion , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-ets/metabolism , Repressor Proteins/metabolism , Sequence Analysis, DNA , Sequence Analysis, RNA , Skin Neoplasms/genetics , Skin Neoplasms/pathology , ETS Translocation Variant 6 Protein
9.
Cancer Cell ; 29(6): 805-819, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27238082

ABSTRACT

We have discovered and developed a series of molecules (thiazole benzenesulfonamides). HA15, the lead compound of this series, displayed anti-cancerous activity on all melanoma cells tested, including cells isolated from patients and cells that developed resistance to BRAF inhibitors. Our molecule displayed activity against other liquid and solid tumors. HA15 also exhibited strong efficacy in xenograft mouse models with melanoma cells either sensitive or resistant to BRAF inhibitors. Transcriptomic, proteomic, and biochemical studies identified the chaperone BiP/GRP78/HSPA5 as the specific target of HA15 and demonstrated that the interaction increases ER stress, leading to melanoma cell death by concomitant induction of autophagic and apoptotic mechanisms.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Resistance, Neoplasm/drug effects , Endoplasmic Reticulum Stress/drug effects , Melanoma/drug therapy , Sulfonamides/administration & dosage , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Endoplasmic Reticulum Chaperone BiP , Gene Expression Regulation, Neoplastic/drug effects , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Melanoma/metabolism , Mice , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays
10.
PLoS Comput Biol ; 12(4): e1004873, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27100738

ABSTRACT

Germline copy number variants (CNVs) and somatic copy number alterations (SCNAs) are of significant importance in syndromic conditions and cancer. Massively parallel sequencing is increasingly used to infer copy number information from variations in the read depth in sequencing data. However, this approach has limitations in the case of targeted re-sequencing, which leaves gaps in coverage between the regions chosen for enrichment and introduces biases related to the efficiency of target capture and library preparation. We present a method for copy number detection, implemented in the software package CNVkit, that uses both the targeted reads and the nonspecifically captured off-target reads to infer copy number evenly across the genome. This combination achieves both exon-level resolution in targeted regions and sufficient resolution in the larger intronic and intergenic regions to identify copy number changes. In particular, we successfully inferred copy number at equivalent to 100-kilobase resolution genome-wide from a platform targeting as few as 293 genes. After normalizing read counts to a pooled reference, we evaluated and corrected for three sources of bias that explain most of the extraneous variability in the sequencing read depth: GC content, target footprint size and spacing, and repetitive sequences. We compared the performance of CNVkit to copy number changes identified by array comparative genomic hybridization. We packaged the components of CNVkit so that it is straightforward to use and provides visualizations, detailed reporting of significant features, and export options for integration into existing analysis pipelines. CNVkit is freely available from https://github.com/etal/cnvkit.


Subject(s)
DNA Copy Number Variations , Software , Comparative Genomic Hybridization/statistics & numerical data , Computational Biology , Genome, Human , Genome-Wide Association Study/statistics & numerical data , High-Throughput Nucleotide Sequencing/statistics & numerical data , Humans , In Situ Hybridization, Fluorescence/statistics & numerical data , Sequence Analysis, DNA/statistics & numerical data
11.
Nat Genet ; 47(10): 1194-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26343386

ABSTRACT

Desmoplastic melanoma is an uncommon variant of melanoma with sarcomatous histology, distinct clinical behavior and unknown pathogenesis. We performed low-coverage genome and high-coverage exome sequencing of 20 desmoplastic melanomas, followed by targeted sequencing of 293 genes in a validation cohort of 42 cases. A high mutation burden (median of 62 mutations/Mb) ranked desmoplastic melanoma among the most highly mutated cancers. Mutation patterns strongly implicate ultraviolet radiation as the dominant mutagen, indicating a superficially located cell of origin. Newly identified alterations included recurrent promoter mutations of NFKBIE, encoding NF-κB inhibitor ɛ (IκBɛ), in 14.5% of samples. Common oncogenic mutations in melanomas, in particular in BRAF (encoding p.Val600Glu) and NRAS (encoding p.Gln61Lys or p.Gln61Arg), were absent. Instead, other genetic alterations known to activate the MAPK and PI3K signaling cascades were identified in 73% of samples, affecting NF1, CBL, ERBB2, MAP2K1, MAP3K1, BRAF, EGFR, PTPN11, MET, RAC1, SOS2, NRAS and PIK3CA, some of which are candidates for targeted therapies.


Subject(s)
Exome , I-kappa B Proteins/genetics , MAP Kinase Signaling System , Melanoma/genetics , Mutation , Promoter Regions, Genetic , Proto-Oncogene Proteins/genetics , Humans , Melanoma/enzymology , Melanoma/pathology
13.
Nat Commun ; 6: 7174, 2015 May 27.
Article in English | MEDLINE | ID: mdl-26013381

ABSTRACT

Oncogenic gene fusions have been identified in many cancers and many serve as biomarkers or targets for therapy. Here we identify six different melanocytic tumours with genomic rearrangements of MET fusing the kinase domain of MET in-frame to six different N-terminal partners. These tumours lack activating mutations in other established melanoma oncogenes. We functionally characterize two of the identified fusion proteins (TRIM4-MET and ZKSCAN1-MET) and find that they constitutively activate the mitogen-activated protein kinase (MAPK), phosphoinositol-3 kinase (PI3K) and phospholipase C gamma 1 (PLCγ1) pathways. The MET inhibitors cabozantinib (FDA-approved for progressive medullary thyroid cancer) and PF-04217903 block their activity at nanomolar concentrations. MET fusion kinases thus provide a potential therapeutic target for a rare subset of melanoma for which currently no targeted therapeutic options currently exist.


Subject(s)
Gene Rearrangement , Melanoma, Experimental/genetics , Nevus, Epithelioid and Spindle Cell/genetics , Oncogene Fusion , Proto-Oncogene Proteins c-met/genetics , Adult , Animals , Cell Line , Female , Humans , Male , Mice , Middle Aged
15.
Nat Commun ; 5: 3116, 2014.
Article in English | MEDLINE | ID: mdl-24445538

ABSTRACT

Spitzoid neoplasms are a group of melanocytic tumours with distinctive histopathological features. They include benign tumours (Spitz naevi), malignant tumours (spitzoid melanomas) and tumours with borderline histopathological features and uncertain clinical outcome (atypical Spitz tumours). Their genetic underpinnings are poorly understood, and alterations in common melanoma-associated oncogenes are typically absent. Here we show that spitzoid neoplasms harbour kinase fusions of ROS1 (17%), NTRK1 (16%), ALK (10%), BRAF (5%) and RET (3%) in a mutually exclusive pattern. The chimeric proteins are constitutively active, stimulate oncogenic signalling pathways, are tumourigenic and are found in the entire biologic spectrum of spitzoid neoplasms, including 55% of Spitz naevi, 56% of atypical Spitz tumours and 39% of spitzoid melanomas. Kinase inhibitors suppress the oncogenic signalling of the fusion proteins in vitro. In summary, kinase fusions account for the majority of oncogenic aberrations in spitzoid neoplasms and may serve as therapeutic targets for metastatic spitzoid melanomas.


Subject(s)
Melanoma/metabolism , Nevus, Epithelioid and Spindle Cell/metabolism , Oncogene Proteins, Fusion/metabolism , Protein Kinases/metabolism , Skin Neoplasms/metabolism , Base Sequence , DNA Mutational Analysis , Genome, Human , Humans , Melanoma/pathology , Molecular Sequence Data , Nevus, Epithelioid and Spindle Cell/pathology , Reproducibility of Results , Skin Neoplasms/pathology , Xenograft Model Antitumor Assays
16.
Pigment Cell Melanoma Res ; 26(6): 845-51, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23890088

ABSTRACT

BRAF is the most prevalent oncogene and an important therapeutic target in melanoma. In some cancers, BRAF is activated by rearrangements that fuse its kinase domain to 5' partner genes. We examined 848 comparative genomic hybridization profiles of melanocytic tumors and found copy number transitions within BRAF in 10 tumors, of which six could be further characterized by sequencing. In all, the BRAF kinase domain was fused in-frame to six N-terminal partners. No other mutations were identified in melanoma oncogenes. One of the seven melanoma cell lines without known oncogenic mutations harbored a similar BRAF fusion, which constitutively activated the MAP kinase pathway. Sorafenib, but not vemurafenib, could block MAP kinase pathway activation and proliferation of the cell line at clinically relevant concentrations, whereas BRAF(V) (600E) mutant melanoma cell lines were significantly more sensitive to vemurafenib. The patient from whom the cell line was derived showed a durable clinical response to sorafenib.


Subject(s)
Melanocytes/pathology , Melanoma/drug therapy , Melanoma/enzymology , Molecular Targeted Therapy , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Skin Neoplasms/enzymology , Adolescent , Adult , Child, Preschool , Enzyme Activation/drug effects , Female , Gene Rearrangement/drug effects , Humans , Indoles/pharmacology , Indoles/therapeutic use , MAP Kinase Signaling System/drug effects , Male , Melanocytes/drug effects , Melanocytes/enzymology , Melanoma/pathology , Middle Aged , Nevus, Epithelioid and Spindle Cell/pathology , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Niacinamide/therapeutic use , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Sorafenib , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Vemurafenib , Young Adult
17.
PLoS One ; 5(10): e15400, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-21060846

ABSTRACT

The small Rho G-protein Rac1 is highly conserved from fungi to humans, with approximately 65% overall sequence identity in Candida albicans. As observed with human Rac1, we show that C. albicans Rac1 can accumulate in the nucleus, and fluorescence recovery after photobleaching (FRAP) together with fluorescence loss in photobleaching (FLIP) studies indicate that this Rho G-protein undergoes nucleo-cytoplasmic shuttling. Analyses of different chimeras revealed that nuclear accumulation of C. albicans Rac1 requires the NLS-motifs at its carboxyl-terminus, which are blocked by prenylation of the adjacent cysteine residue. Furthermore, we show that C. albicans Rac1 dynamics, both at the plasma membrane and in the nucleus, are dependent on its activation state and in particular that the inactive form accumulates faster in the nucleus. Heterologous expression of human Rac1 in C. albicans also results in nuclear accumulation, yet accumulation is more rapid than that of C. albicans Rac1. Taken together our results indicate that Rac1 nuclear accumulation is an inherent property of this G-protein and suggest that the requirements for its nucleo-cytoplasmic shuttling are conserved from fungi to humans.


Subject(s)
Candida albicans/metabolism , rac1 GTP-Binding Protein/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Humans
18.
J Invest Dermatol ; 129(5): 1208-18, 2009 May.
Article in English | MEDLINE | ID: mdl-19177142

ABSTRACT

Activation of PPARgamma by synthetic ligands, thiazolidinediones, inhibits the proliferation of cancer cells. In this report, focusing our attention on ciglitazone, we show that ciglitazone inhibits melanoma growth by inducing apoptosis and cell-cycle arrest, whereas normal melanocytes are resistant to ciglitazone. In melanoma cells, ciglitazone-induced apoptosis is associated with caspase activations and a loss of mitochondrial membrane potential. Induction of cell-cycle arrest by ciglitazone is associated with changes in expression of key cell-cycle regulators such as p21, cyclin D1, and pRB hypophosphorylation. Cell-cycle arrest occurs at low ciglitazone concentrations and through a PPARgamma-dependent pathway, whereas the induction of apoptosis is caused by higher ciglitazone concentrations and independently of PPARgamma. These results allow an effective molecular dissociation between proapoptotic effects and growth inhibition evoked by ciglitazone in melanoma cells. Finally, we show that in vivo treatment of nude mice by ciglitazone dramatically inhibits human melanoma xenograft development. The data presented suggest that ciglitazone might be a better candidate for clinical trials in melanoma treatment than the thiazolidinediones currently used in the treatment of type 2 diabetes, such as rosiglitazone, which is devoid of a proapoptotic PPARgamma-independent function.


Subject(s)
Antineoplastic Agents/therapeutic use , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Thiazolidinediones/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Nude , PPAR gamma/metabolism , Signal Transduction/physiology , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Thiazolidinediones/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...