Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Liver Int ; 43(12): 2776-2793, 2023 12.
Article in English | MEDLINE | ID: mdl-37804055

ABSTRACT

BACKGROUND & AIMS: The class I- phosphatidylinositol-3 kinases (PI3Ks) signalling is dysregulated in almost all human cancers whereas the isoform-specific roles remain poorly investigated. We reported that the isoform δ (PI3Kδ) regulated epithelial cell polarity and plasticity and recent developments have heightened its role in hepatocellular carcinoma (HCC) and solid tumour progression. However, its role in cholangiocarcinoma (CCA) still lacks investigation. APPROACH & RESULTS: Immunohistochemical analyses of CCA samples reveal a high expression of PI3Kδ in the less differentiated CCA. The RT-qPCR and immunoblot analyses performed on CCA cells stably overexpressing PI3Kδ using lentiviral construction reveal an increase of mesenchymal and stem cell markers and the pluripotency transcription factors. CCA cells stably overexpressing PI3Kδ cultured in 3D culture display a thick layer of ECM at the basement membrane and a wide single lumen compared to control cells. Similar data are observed in vivo, in xenografted tumours established with PI3Kδ-overexpressing CCA cells in immunodeficient mice. The expression of mesenchymal and stemness genes also increases and tumour tissue displays necrosis and fibrosis, along with a prominent angiogenesis and lymphangiogenesis, as in mice liver of AAV8-based-PI3Kδ overexpression. These PI3Kδ-mediated cell morphogenesis and stroma remodelling were dependent on TGFß/Src/Notch signalling. Whole transcriptome analysis of PI3Kδ using the cancer cell line encyclopedia allows the classification of CCA cells according to cancer progression. CONCLUSIONS: Overall, our results support the critical role of PI3Kδ in the progression and aggressiveness of CCA via TGFß/src/Notch-dependent mechanisms and open new directions for the classification and treatment of CCA patients.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/pathology , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases/metabolism , Liver Neoplasms/pathology , Cholangiocarcinoma/pathology , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Fibrosis , Transforming Growth Factor beta , Protein Isoforms , Cell Line, Tumor
2.
Commun Biol ; 5(1): 740, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35879421

ABSTRACT

The stem cells involved in formation of the complex human body are epithelial cells that undergo apicobasal polarization and form a hollow lumen. Epithelial plasticity manifests as epithelial to mesenchymal transition (EMT), a process by which epithelial cells switch their polarity and epithelial features to adopt a mesenchymal phenotype. The connection between the EMT program and acquisition of stemness is now supported by a substantial number of reports, although what discriminates these two processes remains largely elusive. In this study, based on 3D organoid culture of hepatocellular carcinoma (HCC)-derived cell lines and AAV8-based protein overexpression in the mouse liver, we show that activity modulation of isoform δ of phosphoinositide 3-kinase (PI3Kδ) controls differentiation and discriminates between stemness and EMT by regulating the transforming growth factor ß (TGFß) signaling. This study provides an important tool to control epithelial cell fate and represents a step forward in understanding the development of aggressive carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Class I Phosphatidylinositol 3-Kinases , Epithelial-Mesenchymal Transition/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Phosphatidylinositol 3-Kinases , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...