Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Plants (Basel) ; 13(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38592880

ABSTRACT

Copaifera mildbraedii Desf. is an evergreen tree with an umbrella-like crown. It is distributed from south-eastern Nigeria eastward to the Central African Republic (CAR). The aim of this study was to assess the chemical composition and biological activities of C. mildbraedii bark, as well as the chemical composition of the essential oil. Ethyl acetate (EtOAc) and methanol (MeOH) extracts showed a high total phenolic content (TPC) (149.9 and 148.8 mg GAE/g dry residue (dr), respectively), which was related to good antioxidant activity (DPPH) with an IC50 of 21.2 and 12.9 µg/mL, respectively. High-performance liquid chromatography coupled with diode array detector (HPLC-DAD) analysis revealed seven phenolic compounds with myricitrin (13.3 mg/g dr) and 2,4-dihydroxy-3,6-dimethyl benzoic acid (30.7 mg/g dr) as major compounds, while gas chromatography-mass spectrometry (GC-MS) analysis enabled detection of 13 volatile compounds (3 before and 10 after derivatization). Thirty compounds were identified in the essential oil, which corresponds to 65% of all identified compounds. Among the latter, E,E-farnesylacetone and γ-gurjunene were considered as major compounds (8.08 and 10.43%, respectively). The EtOAc extract showed a potent potential, simultaneously, against anti-acetylcholinesterase (AChE), anti-15-lipoxygenase (15-LOX), anti-xanthine oxidase (XOD), and cytotoxic (OVCAR) activities, whereas cyclohexane (CYHA) and dichloromethane (DCM) extracts showed a cytotoxic effect with high percentages of inhibition (95.2%).

2.
Heliyon ; 10(8): e28947, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38638945

ABSTRACT

Polygonum is a plant genus that includes annual and perennial species and is found at various temperatures, from northern temperate regions to tropical and subtropical areas. The genus Polygonum has been used for centuries for various disorders, including hypertension, intestinal and stomach pain, dysuria, jaundice, toothaches, skin allergies, hemorrhoids, cardiac disorders, kidney stones, hemostasis, hyperglycemia, and others. Various databases, including Google Scholar, Scifinder, ScienceDirect, PubMed, Scopus, ResearchGate, and Web of Science, were utilized to collect pertinent scientific literature data. According to bibliographic studies, the Polygonum genus possesses various compounds from different families, including phenolic acids (gallic acid, caffeic acid, quinic acid, p-coumaric acid, ferulic acid, protocatechuic acid, chlorogenic acid, and many other compounds), flavonoids (quercetin, catechin, epicatechin, quercitrin, kaempferol, myricetin, etc.), tannins, stilbenes (polydatin and resveratrol), terpenes (α-pinene, ß-caryophyllene and ß-caryophyllene oxide, bisabolene, ß-farnesene, etc.), fatty acids (decanoic acid, lauric acid, linoleic acid, oleic acid, palmitic acid, stearic acid, dodecanoic acid), polysaccharides, and others. Various chemical and biological activities (in vitro and in vivo), such as antioxidant, antimicrobial, anticancer, antitumor, anti-inflammatory, antidiabetic, antiparasitic, hepatoprotective, neuropharmacological, gastroprotective, diuretic, antipyretic, and others, have been described in several biological studies involving this species. An updated summary of Polygonum species and their ethnomedicinal, phytochemical, toxicological, pharmacological, and phytopharmaceutical formulations is necessary. Considering the numerous potentialities of the Polygonum species and their wide-ranging use, it is extremely essential to provide knowledge by compiling the accessible literature to identify the topics of intense investigation and the main gaps to better design future studies. The objective of this review is to give readers a better understanding, greater comprehension, and in-depth knowledge of the genus Polygonum's traditional applications, phytochemistry, pharmacology, toxicological features, and galenic formulation. Several species of this genus have been detailed in this review, including those that were frequently used in traditional medicine (P. minus, P. aviculare, P. hydropiper, P. cuspidatum, and P. multiflorum) and many of the genus' therapeutic species, like P. equisetiforme, which do not get enough attention.

3.
Int J Mol Sci ; 25(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542209

ABSTRACT

Bacillus megaterium is particularly known for its abundance in soils and its plant growth promotion. To characterize the metabolites excreted by this specie, we performed successive liquid/liquid extractions from bacteria culture medium with different polarity solvents (cyclohexane, dichloromethane, ethyl acetate and butanol) to separate the metabolites in different polarity groups. The extracts were characterized regarding their total phenolic content, the amount of reducing sugar, the concentration of primary amines and proteins, their chromatographic profile by HPLC-DAD-ELSD and their chemical identification by GC-MS. Among the 75 compounds which are produced by the bacteria, 19 identifications were for the first time found as metabolites of B. megaterium and 23 were described for the first time as metabolites in Bacillus genus. The different extracts containing B. megaterium metabolites showed interesting agronomic activity, with a global inhibition of seed germination rates of soya, sunflower, corn and ray grass, but not of corn, compared to culture medium alone. Our results suggest that B. megaterium can produce various metabolites, like butanediol, cyclic dipeptides, fatty acids, and hydrocarbons, with diverse effects and sometimes with opposite effects in order to modulate its response to plant growth and adapt to various environmental effects. These findings provide new insight into bioactive properties of this species for therapeutic uses on plants.


Subject(s)
Bacillus megaterium , Antioxidants/metabolism , Gas Chromatography-Mass Spectrometry
4.
Plants (Basel) ; 13(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38202445

ABSTRACT

Indigenous to Lebanon, Origanum syriacum L. and Cousinia libanotica D.C. are notable plants in the Middle East, with O. syriacum known for its aromatic qualities and C. libanotica being less explored. Both plants have a significant role in traditional medicine for treating various ailments. This study aimed to evaluate the phytochemical composition and biological properties of the extracts from these plants. The extracts were obtained through cold maceration with solvents of increasing polarity. The ethyl acetate extract of O. syriacum exhibited the highest total polyphenol content. High-performance liquid chromatography (HPLC) identified fifteen compounds in both C. libanotica and O. syriacum extracts, whereas gas chromatography-mass spectrometry (GC-MS) analysis unveiled 179 volatile compounds. Notably, the O. syriacum-MeOH extract showed moderate antioxidant activity. Both plants' methanolic extracts demonstrated significant anti-Alzheimer's potential. The O. syriacum-dichloromethane and C. libanotica-cyclohexane extracts displayed the highest cytotoxicities against the HCT-116 cell line. For anti-proliferative activity against the Caco-2 cell line, the O. syriacum-methanol and C. libanotica-cyclohexane extracts were the most effective. This study provides valuable insights into the phytochemistry and potential therapeutic applications of extracts from these two oriental plant species.

5.
Chem Biodivers ; 20(12): e202301177, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37926684

ABSTRACT

Limonium. Mill is a genus of flowering plants belonging to the Plumbaginaceae family. The present study aimed to compare two Limonium species (L. pruinosum Kuntze and L. tunetanum (Barratte & Bonnet) Maire) in terms of their chemical composition and bioactivity. Chemical profiling showed that the methanolic (MeOH) extracts of both species were the most enriched with total phenolic (TP) and total flavonoid (TF) contents. The TFC were higher in L. tunetanum compared to L. pruinosum. HPLC-DAD analysis showed that distinctly the gallic acid and L-tyrosine 7-amido-4-methylcoumarin were the main compounds for L. pruinosum and L. tunetanum, respectively. For both Limonium. Mil species, the MeOH extracts displayed the highest antioxidant with IC50 of 7.7 and 8.4 µg/mL for L. pruinosum and L. tunetanum, respectively. The highest anti-15-lipoxygnase activity was recorded in the ethyl acetate (IC50 =14.2 µg/mL) and Methanol (IC50 =15.6 µg/mL) extracts for L. pruinosum. However, for L. tunetanum the best activity was recorded for dichloromethane extract (IC50 =10.4 µg/mL). L. pruinosum extracts displayed the highest cytotoxic activity against MCF-7 and HCT-116 cell lines compared to L. tunetanum ones. The obtained bioactivity discrepancy between Limonium. Mill species was discussed in relation to the organic extract chemical richness.


Subject(s)
Antineoplastic Agents , Plumbaginaceae , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plumbaginaceae/chemistry , Wetlands , Flavonoids/chemistry , Flavonoids/pharmacology
6.
Molecules ; 28(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37836653

ABSTRACT

Among the family of sugarcane spirits, those made from juice are diverse and often produced in a traditional way. They must be distinguished from other sugarcane spirits, which are more widely produced and made from other sugarcane derivatives, such as molasses. These alcoholic beverages contribute significantly to the socio-economic development of many countries. However, despite ancestral know-how, there is a lack of contemporary data required to characterize some sugarcane juice spirits (SCJSs) and to overcome the current and future threats that producers will have to face. While preserving their authenticity and specificity, SCJS producers expect to improve and ensure sufficient yield and a superior quality product. Even if the scientific knowledge on these spirits is not comparable, the available data could help identify the critical points to be improved in the making process. This review aims to present the main SCJSs encountered worldwide, defining their specific features through some important aspects with, notably, references to the complex notion of terroir. To continue, we discuss the main steps of the SCJS process from harvesting to aging. Finally, we expose an inventory of SCJS's chemical compositions and of their sensory description that define the specific organoleptic properties of these spirits.


Subject(s)
Saccharum , Saccharum/chemistry , Alcoholic Beverages/analysis , Molasses
7.
Molecules ; 28(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37687079

ABSTRACT

Rutabaga, also known as swede and scientifically classified as Brassica napus napobrassica, is a biennial edible root vegetable that belongs to the Brassica genus and is widely cultivated in North Europe and North America. The present study highlights both the phytochemical profile and the in vitro biological properties of rutabaga seed extracts obtained through maceration using solvents of increasing polarity, namely, cyclohexane (CYHA), dichloromethane (DCM), ethyl acetate (EtOAc), methanol (MeOH), and water (H2O). HPLC-DAD was used to identify and quantify phenolic compounds, while volatile compounds were detected using GC-MS. The in vitro antioxidant capacity of the rutabaga seed extracts was evaluated through DPPH free radical scavenging activity. The in vitro anti-inflammatory activity (15-lipoxygenase (15-LOX) enzyme) was determined spectrophotometrically at the same concentration. Additionally, the cytotoxicity of the seed extracts was evaluated against human colon adenocarcinoma cells (Caco-2) and human embryonic kidney cells (HEK-293) using the MTT assay. The rutabaga seed extracts obtained from EtOAc, MeOH, and H2O were particularly rich in reducing sugars, ranging from 189.87 to 473.75 mg/g DW. The MeOH extract displayed the highest concentration of both sugars and polyphenols. Phytochemically, the HPLC-DAD analysis revealed the presence of four phenolic compounds in the tested extracts, including (±) synephrine, gallic acid, p-coumaric acid, and trans-ferulic acid, newly discovered in rutabaga organs. Moreover, a total of ten volatile compounds were identified through GC-MS analysis, both before and after derivatization. At a concentration of 50 µg/mL, the methanol extract exhibited high antioxidant activity with 52.95% inhibition, while CYHA, DCM, and EtOAc exhibited moderate anti-15-LOX activity with less than 30% inhibition. Except for DCM and aqueous extracts, rutabaga seeds did not exhibit any anti-proliferative potential against Caco-2 cell lines. Interestingly, no cytotoxicity was registered for any of the seed extracts against the normal cell line HEK-293. Overall, the obtained data highlight the potential utilization of rutabaga seeds as a source of bioactive compounds in various fields, including pharmaceuticals, nutraceuticals, and functional foods.


Subject(s)
Adenocarcinoma , Brassica napus , Brassica , Colonic Neoplasms , Humans , Caco-2 Cells , HEK293 Cells , Methanol , Antioxidants/pharmacology , Plant Extracts/pharmacology
8.
Plants (Basel) ; 12(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37765396

ABSTRACT

Infusions of Camellia sinensis leaves have been known for their health benefits. The Bio Concentrate Assets® (ABC) method is a method of enriching organic infusion leaves (from Camellia sinensis) with organic dry and concentrated extracts using organic acacia gum, and its application to white tea has provided Qi cha tea®. In the present study, the content of tea polyphenols and caffeine, and the biochemical properties of Qi cha tea® and its botanical constituents (elderberry, tulsi, Echinacea purpurea, orange peel, lemongrass, and acacia gum) were assessed. Antioxidant and cell viability activities were determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay and MTT (3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) assay in human Caco-2 and HCT-116 cell lines, and ascorbic acid and tamoxifen, respectively. The caffeine and polyphenol composition of Qi cha tea® was modified with less caffeine and gallic acid and more epigallocatechin gallate (EGCG) than the original white tea. The majority of the tested botanical samples including Qi cha tea® at 50 µg/mL show similar antioxidant activities, with the exception of Echinacea purpurea. The greatest effect was found for white tea. The antioxidant power of the Qi cha tea® (90% at 50 µg/mL for pressurized liquid extraction (PLE) was divided by approximately a factor of two (61% at 50 µg/mL for pressurized liquid extraction products (PLEP)), which corresponds to the 48.3% (mass/mass) white tea original content in the Qi cha tea®. Qi cha tea® shows the lowest cytotoxic activity in the viability of the two cell lines when compared to white tea. The application of the ABC method to Qi cha tea® using various botanicals and dry extract with acacia gum as blinder has allowed the development of a new innovative functional health beverage that complies with European health claims.

9.
Beilstein J Org Chem ; 19: 1251-1258, 2023.
Article in English | MEDLINE | ID: mdl-37674521

ABSTRACT

A highly α-regioselective N-nucleophilic allylic substitution of cyclic MBH alcohols and acetates with imidazole or benzimidazole, in toluene at reflux with an azeotropic distillation, was successfully carried out with no catalysts or additives, affording the corresponding N-substituted imidazole derivatives in good yields. On the other hand, in refluxing toluene or methanol, the aza-Michael addition of imidazole onto acyclic MBH alcohols was performed using DABCO as an additive, leading to the corresponding 1,4-adducts in 70-84% yields.

10.
Plants (Basel) ; 12(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37653917

ABSTRACT

Berberis libanotica Ehrenb. ex C.K. Schneider of the Berberidaceae family is an endemic Lebanese plant and is widely used in folk medicine. This study highlights the phytochemical composition and biological activities (in vitro) of fruit and leaf extracts. The two organs were extracted by cold maceration with four solvents of increasing polarity: cyclohexane, dichloromethane, ethyl acetate and methanol. The extracts were screened for their chemical composition by HPLC-DAD to identify and quantify the phenolic compounds. Volatile compounds were detected by GC-MS. The antioxidant capacity through DPPH inhibition was tested. The anti-acetylcholinesterase, antibacterial and anti-proliferative activities were evaluated. Thirteen compounds, including 12 phenolics, were detected in the fruits, whereas 8 phenolic compounds were identified in the leaves. A total of 137 volatile compounds were identified in both organs. At 50 µg/mL, the methanolic leaf extract presented the highest antioxidant capacity, with an inhibition percentage of 54.9%. The dichloromethane fruit extract reduced the acetylcholinesterase activity by 65.3%. The cyclohexane leaf extract reduced the proliferation of the HCT-116 cells by 54.8%, while the dichloromethane fruit extract exhibited the best inhibition against the Caco-2 cells (54%). Interestingly, the minimum inhibitory concentration (MIC) value of the cyclohexane fruit extract against Salmonella enterica serovar Kentucky was 2.4 µg/mL, and the MIC value of the cyclohexane leaf extract against E. coli was 9.7 µg/mL.

11.
Plants (Basel) ; 12(14)2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37514346

ABSTRACT

Prunus dulcis is one of the most widely cultivated species in the world. Its fruit (almond) is rich in various nutritious and bioactive compounds that exert several beneficial effects. The aim of this study was to determine the chemical profile and evaluate the biological potential in vitro of almond shell extracts. The chemical analysis of shell extracts led to the identification of 15 compounds by HPLC-DAD, of which 11 were first detected in the almond plant. Twenty-six volatile compounds were identified by the GC-MS technique; among them, seven were firstly detected in the studied plant. For the biological activities, the extracts demonstrated moderate inhibition potential against the antioxidant, antidiabetic, and cytotoxic activities. The methanol extract at 50 µg/mL showed the highest antioxidant (45%) and antidiabetic activities (45% against alpha-glucosidase and 31% against alpha-amylase extracts), while the cyclohexane and dichloromethane at 50 µg/mL showed the highest cytotoxic activity towards Hela (32.2% with cyclohexane) and RAW 264-7 (45% with dichloromethane). Overall, these findings demonstrate the potential of almond shell extracts as a source of bioactive compounds that could be applied in the pharmaceutical and medical fields.

12.
Plants (Basel) ; 12(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37050083

ABSTRACT

Soilless culture is considered the mostpromising, intensive, and sustainable approach with various advantages for plant production in terms of saving water and nutrients. It can provide consumers with sufficient and high-quality food. However, the commonly used growing substrate for soilless cultivation, coconut fiber (CF), is usually imported and expensive or even unavailable. The objectives of this study were to investigate the impact of local organic farm resources substrates on tomato (Solanum lycopersicum L.) plant growth, water relations, photosynthesis, chlorophyll fluorescence, and phytochemical analysis of fruits in a hydroponics culture system. Two growth substrates were evaluated: date-palm waste composted with animal manure (7:3 w/w) (DPAM) and date-palm trunk compost (DPT). CF and local soil were utilized as positive and negative controls, respectively, in randomized blocks. The results revealed that DPAM substrate enhanced plant growth and physiology: shoot development, leaves tissues hydration, and photosynthetic parameters, as well as chlorophyll fluorescence. However, DPT and CF improved fruit quality: water, mineral, sugar, and protein content. The antioxidant activity of the fruit extract was the greater in DPAM, reaching 13.8 mg GAEg-1 DW. This value wasdecreased in soil by 40%. Photosynthesis activity was the most important in DPAM with 12 µmol CO2 m-2 s-1, and only 6.4 µmol CO2 m-2 s-1 in the soil condition. However, regarding the non-photochemical quenching, the dissipated light energy was greater in soil (0.096 ± 0.02) than in DPAM (0.025 ± 0.04). Date-palm waste-based substrates improved tomato vegetative growth and fruit quality as compared to soil-based culture. Date-palm waste-based substrates supplemented with manure appear to be promising and less expensive alternatives to the coconut fiber substrate extensively used in soilless crops in North Africa.

13.
Life (Basel) ; 13(4)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37109433

ABSTRACT

The genus Scorzonera has various medicinal values. Species belonging to this genus were traditionally used as drugs or in food. The current study aimed to determine the phytochemical composition, antioxidant activity, and biological properties of the tuber, leaf, and flower of Scorzonera undulata extracts, collected from the southwest of Tunisia. Phenolic compounds from the three parts were extracted using two solvents (water and ethanol) and two extraction techniques (maceration and ultrasound). The total phenolic content was measured by the Folin-Ciocalteu assay. Furthermore, the chemical composition of Scorzonera undulata extract was also investigated by the LC-ESI-MS method using phenolic acid and flavonoid standards. The variation of the extraction methods induced a variation in the real potentialities of the three parts in terms of bioactive molecules. However, the aerial part of S. undulata (leaves and flowers) showed, in general, the highest phenolic contents. Twenty-five volatile compounds have been detected by GC-MS in S. undulata extracts; among them, fourteen were identified before derivatization. The DPPH test showed that the aerial part of the plant has a higher antioxidant activity compared to the tuber (25.06% at 50 µg/mL for the leaf ethanolic extract obtained by ultrasound extraction). For most biological activities (anti-Xanthine, anti-inflammatory, and antidiabetic (alpha-amylase and alpha-glucosidase)), the aerial parts (flowers and leaves) of the plant showed the highest inhibition than tubers.

14.
Molecules ; 28(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36985391

ABSTRACT

This work aimed to evaluate the biological activities of 20 flavones (M1 to M20) and discuss their structure-activity relationships. In vitro assays were established to assess their numerous biological activities (anti-α-amylase, anti-acetylcholinesterase, anti-xanthine oxidase, anti-superoxide dismutase, and anticancer cell lines (HCT-116, MCF7, OVCAR-3, IGROV-1, and SKOV-3 cells lines)). An in silico docking study was also established in order to find the relationship between the chemical structure and the biological activities. In vitro tests revealed that M5 and M13 were the most active in terms of anti-α-amylase activity (IC50 = 1.2 and 1.4 µM, respectively). M17 was an inhibitor of xanthine oxidase (XOD) and performed better than the reference (allopurinol), at IC50 = 0.9 µM. M7 presented interesting anti-inflammatory (IC50 = 38.5 µM), anti-supriode dismutase (anti-SOD) (IC50 = 31.5 µM), and anti-acetylcholinesterase (IC50 = 10.2 µM) activities. Those abilities were in concordance with its high scavenging activity in antioxidant ABTS and DPPH assays, at IC50 = 6.3 and 5.2 µM, respectively. Selectivity was detected regarding cytotoxic activity for those flavones. M1 (IC50 = 35.9 µM) was a specific inhibitor to the MCF7 cancer cell lines. M3 (IC50 = 44.7 µM) and M15 (IC50 = 45.6 µM) were particularly potent for the OVCAR-3 cell line. M14 (IC50 = 4.6 µM) contributed more clearly to inhibiting the colon cancer cell line (HCT116). M7 (IC50 = 15.6 µM) was especially active against the ovarian SKOV human cancer cell line. The results of the biological activities were supported by means of in silico molecular docking calculations. This investigation analyzed the contribution of the structure-activity of natural flavones in terms of their biological properties, which is important for their future application against diseases.


Subject(s)
Antineoplastic Agents , Flavones , Ovarian Neoplasms , Humans , Female , Flavones/pharmacology , Molecular Docking Simulation , Apoptosis , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Superoxide Dismutase/metabolism , Xanthine Oxidase , Amylases/metabolism , Molecular Structure , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Cell Proliferation
15.
Molecules ; 28(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36985401

ABSTRACT

The Salvia fruticosa (Mill.) is the most medicinal plant used in Lebanon. The aim of this study is to investigate the phytochemical composition and the biological activities (in vitro) of its extracts. The plant was extracted by cold maceration with four solvents presenting an increasing polarity: cyclohexane (CHX), dichloromethane (DCM), ethyl acetate (EtOAc) and methanol (MeOH). The extracts were screened for their chemical composition by a HPLC-DAD detector for phenolic compounds identification and quantification and by GC-MS for volatile compounds detection. The antioxidant capacity (DPPH inhibition) was tested. Biological activities, mainly anti-Alzheimer activity (acetylcholinesterase inhibition), the antiproliferation of two human colon cancer cell lines (HCT-116 and Caco-2 cells) and antibacterial activity, were evaluated. Ten aromatic compounds were quantified by HPLC-DAD analysis. A total of 123 compounds were detected by GC-MS analysis. The MeOH extract showed a very interesting antioxidant activity with an inhibition percentage (IP) of 76.1% and an IC50 of 19.4 µg/mL. The EtOAc extract exhibited the strongest inhibition against the acetylcholinesterase activity (IP = 60.6%) at 50 µg/mL. It also strongly inhibited the proliferation of the HCT-116 cells (IP = 87.5%), whereas the DCM extract gave the best result with the Caco-2 cells (IP = 72.3%). The best antibacterial activity was obtained with the MeOH extract against Staphylococcus aureus (MIC = 1.2 µg/mL) and with the EtOAc extract against Escherichia coli (MIC = 2.4 µg/mL). This study highlights the chemical composition and therapeutic potential of S. fruticosa. It is important to mention that the following chemical compounds were identified for the first time in plant extracts: 2,6,11,15-tetramethyl-hexadeca-2,6,8,10,14-pentaene; 4,5,6,7-tetrahydroxy-1,8,8,9-tetramethyl-8,9-dihydrophenaleno [1,2-b]furan-3-one; podocarpa-1,8,11,13-tetraen-3-one,14-isopropyl-1,13-dimethoxy; podocarpa-8,11,13-trien-3-one,12-hydroxy-13-isopropyl-,acetate; 3',8,8'-trimethoxy-3-piperidin-1-yl-2,2'-binaphthyl-1,1',4,4'-tetrone; and 2,3-dehydroferruginol, thus underlining the originality of this study.


Subject(s)
Antioxidants , Salvia , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Acetylcholinesterase , Caco-2 Cells , Anti-Bacterial Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology
16.
Plants (Basel) ; 12(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36678943

ABSTRACT

Phytochemical properties have recently increased the popularity of plant polysaccharides as wound dressing materials. This work aims at studying the structural characteristics of polysaccharides extracted from Moringa leaves (Moringa Leaves Water Soluble Polysaccharide: MLWSP), and its antioxidant activities, cytotoxic effects, and laser burn wound healing effects in rats. This MLWSP was structurally characterized. Results showed 175.21 KDa and 18.6%, respectively, for the molecular weight and the yield of the novel extracted polysaccharide. It is a hetero-polysaccharide containing arabinose, rhamnose, and galactose. XRD suggested a semi-crystalline structure of the studied polymer and FT-IR results revealed a typical polysaccharide structure. It is composed of 50 to 500 µm rocky-shaped units with rough surfaces and it was found to inhibit the proliferation of the human colon (HCT-116) (IC50 = 36 ± 2.5 µg/mL), breast (MCF-7) (IC50 = 48 ± 3.2), and ovary cancers (IC50 = 24 ± 8.1). The MLWSP showed significant antioxidant effects compared to Trolox (CI50 = 0.001 mg/g). Moreover, promising wound healing results were displayed. The effect of MLWSP hydrogel application on laser burn injuries stimulated wound contraction, re-epithelization, and remodeling phases 8 days after treatment. The wound healing potential of MLWSP may be due to its significant antioxidant activity and/or the huge amount of monosaccharide molecules.

17.
Crit Rev Food Sci Nutr ; 63(29): 10105-10129, 2023.
Article in English | MEDLINE | ID: mdl-35486588

ABSTRACT

Kombucha is a traditional healthy beverage usually made by the fermentation of sweetened tea with a symbiotic culture of bacteria and yeast. The consumption of kombucha is associated with numerous health benefits and therefore the beverage has attracted the attention of consumers worldwide. Non-typical substrates (fruits, vegetables, plants, herbs, dairy, and by-products) are being inoculated with the kombucha consortium in an attempt to develop new products. This review paper reviews the fermentation parameters for different non-tea substrates used to make kombucha, in addition to the findings obtained in terms of physico-chemical analysis, biological activities and sensory evaluation.


Subject(s)
Beverages , Yeasts , Beverages/microbiology , Bacteria , Fermentation
18.
Cell Mol Biol (Noisy-le-grand) ; 68(7): 194-199, 2022 Jul 31.
Article in English | MEDLINE | ID: mdl-36495496

ABSTRACT

This study aimed to evaluate the effect of various heating temperatures on the antioxidant activities of camel milk caseins. The samples were processed with three different heat treatments: Pasteurization at low and high temperatures and boiling. Fresh camel milk (unheated) was used as a control. Camel milk caseins were separated by fast ion exchange liquid chromatography (FPLC) and identified by the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS page). The antioxidant activities of caseins were measu- red by three different in vitro methods: 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2, 2'-azino-bis (3-ethylbenzthiazoline-6-sulfonate) (ABTS) radical scavenging activity and ferric reducing power assay (FRAP). The antioxidant activity evaluated by the DPPH assay decreased significantly (p<0.05) with the increase in heat treatment of caseins. However, there was no significant difference in ABTS radical scavenging activity and Ferric Reducing Antioxidant Power assay (FRAP) of heat-treated camel caseins compared to unheated onesStill, a decrease was observed in those activities by the increase of temperature in the different casein concentrations. Besides, whatever the concentration tested and the methods applied, the antioxidant activity of beta-casein (ß-CN) was more pronounced than the alpha-casein (α-CN). Therefore, camel milk casein could be used as a natural source of antioxidants which may have a potential application in the food and nutraceutical industries. Throughout the different heat treatments applied, pasteurization at low temperature could be the most suitable alternative to preserve the antioxidant properties of camel milk.


Subject(s)
Caseins , Milk , Animals , Antioxidants/chemistry , Camelus , Hot Temperature
19.
Front Biosci (Landmark Ed) ; 27(9): 259, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36224017

ABSTRACT

BACKGROUND: Tomato pomace (TP) is a coproduct generated by the extraction of tomato pulp, and is a potential source of bioactive molecules. In this study, we isolated several fractions from TP and evaluated their biological properties. MATERIALS AND METHODS: TP was treated by maceration at room temperature with green solvents (ethanol, ethyl acetate, ethanol:water and ethanol:ethyl acetate) or supercritical CO2 (SC-CO2). The extracts were analyzed by HPLC-DAD to determine their composition, and their antioxidant activity was assessed. The potential therapeutic effects of the isolated fractions were assessed in vitro. RESULTS: We identified 30 molecules on chromatography profiles, which revealed an abundance in phenolic acids, carotenoids, flavonoids and tannins, with differences in selectivity according to the solvent and pretreatment used. The highest radical scavenging activities were measured at 64-72% inhibition, corresponding to the ethanol or ethanol:water extracts with the highest polyphenol or flavonoid contents. Carotenoid content was increased by chemical pretreatment, to attain levels of 161 mg ß-carotene/g ethyl acetate extract. This level of carotenoids seemed to have anti-inflammatory effects, with an IC50 of 9.3 µg/mL. In terms of anti-diabetic effects, the activities of α-glucosidase and α-amylase were best inhibited by extraction in an ethanol-to-water mixture (50:50). Cytotoxicity in a tumor cell line were highest for SC-CO2 extracts (64.5% inhibition) and for ethanol extracts obtained after the enzymatic pretreatment of TP (37% inhibition). Some extracts also had dose-dependent activity against Zika virus. CONCLUSIONS: New fractions obtained from TP with ecocompatible solvents in mild conditions are rich in bioactive molecules. A comparison of the chromatographic profiles of the extracts led to the identification of several key molecules with therapeutic properties. The chemical pretreatment of TP is justified as a mean of increasing the carotenoid content of ethyl acetate fractions, whereas enzymatic pretreatment can increase the antioxidant activity of ethyl acetate fractions and increase the cytotoxicity of ethanol fractions. The SC-CO2 fraction contained a smaller number of metabolites detectable on HPLC, but it had high levels of cytotoxicity and antioxidant activity. Finally, the fractions obtained appeared to be suitable for use to target one or several of the biological activities studied.


Subject(s)
Antioxidants , Solanum lycopersicum , Acetates , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Carbon Dioxide , Ethanol , Flavonoids/pharmacology , Humans , Phenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols , Solvents/analysis , Solvents/chemistry , Tannins/analysis , Water , alpha-Amylases , alpha-Glucosidases , beta Carotene
20.
Molecules ; 27(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36144744

ABSTRACT

Traditionally, Brassica species are widely used in traditional medicine, human food, and animal feed. Recently, special attention has been dedicated to Brassica seeds as source of health-promoting phytochemicals. This review provides a summary of recent research on the Brassica seed phytochemistry, bioactivity, dietary importance, and toxicity by screening the major online scientific database sources and papers published in recent decades by Elsevier, Springer, and John Wiley. The search was conducted covering the period from January 1964 to July 2022. Phytochemically, polyphenols, glucosinolates, and their degradation products were the predominant secondary metabolites in seeds. Different extracts and their purified constituents from seeds of Brassica species have been found to possess a wide range of biological properties including antioxidant, anticancer, antimicrobial, anti-inflammatory, antidiabetic, and neuroprotective activities. These valuable functional properties of Brassica seeds are related to their richness in active compounds responsible for the prevention and treatment of various chronic diseases such as obesity, diabetes, cancer, and COVID-19. Currently, the potential properties of Brassica seeds and their components are the main focus of research, but their toxicity and health risks must also be accounted for.


Subject(s)
Anti-Infective Agents , Brassica , COVID-19 , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Brassica/chemistry , Ethnopharmacology , Glucosinolates , Humans , Hypoglycemic Agents/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytotherapy , Plant Extracts/chemistry , Seeds
SELECTION OF CITATIONS
SEARCH DETAIL
...