Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Neuropharmacol ; 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37475558

ABSTRACT

The external globus pallidus (GPe) is part of the basal ganglia circuit and plays a key role in controlling the actions. Although, many evidence indicate that dopamine through its activation of D2 receptors (D2Rs) modulates the GPe neuronal activity, the precise spatiomolecular characterization of cell populations expressing D2Rs in the mouse GPe is still lacking. By combining single molecule in situ hybridization, cell type-specific imaging analyses, and electrophysiology slice recordings, we found that GPe D2R cells are neurons preferentially localized in the caudal portion of GPe. These neu- rons comprising pallido-striatal, pallido-nigral, and pallido-cortical neurons segregate into two distinct populations displaying molecular and electrophysiological features of GPe GABAergic PV/NKX2.1 and cholinergic neurons respectively. By clarifying the spatial molecular identity of GPe D2R neurons in the mouse, this work provides the basis for future studies aiming at disentangling the action of do- pamine within the GPe.

2.
Nat Commun ; 13(1): 173, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013311

ABSTRACT

Mechanisms of drug-tolerance remain poorly understood and have been linked to genomic but also to non-genomic processes. 5-fluorouracil (5-FU), the most widely used chemotherapy in oncology is associated with resistance. While prescribed as an inhibitor of DNA replication, 5-FU alters all RNA pathways. Here, we show that 5-FU treatment leads to the production of fluorinated ribosomes exhibiting altered translational activities. 5-FU is incorporated into ribosomal RNAs of mature ribosomes in cancer cell lines, colorectal xenografts, and human tumors. Fluorinated ribosomes appear to be functional, yet, they display a selective translational activity towards mRNAs depending on the nature of their 5'-untranslated region. As a result, we find that sustained translation of IGF-1R mRNA, which encodes one of the most potent cell survival effectors, promotes the survival of 5-FU-treated colorectal cancer cells. Altogether, our results demonstrate that "man-made" fluorinated ribosomes favor the drug-tolerant cellular phenotype by promoting translation of survival genes.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Colorectal Neoplasms/drug therapy , DNA, Neoplasm/genetics , Drug Tolerance/genetics , Fluorouracil/pharmacology , Protein Biosynthesis/drug effects , Receptor, IGF Type 1/genetics , Cell Line, Tumor , Cell Survival/drug effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , DNA Replication , DNA, Neoplasm/metabolism , Drug Resistance, Neoplasm/genetics , HCT116 Cells , Halogenation , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Receptor, IGF Type 1/agonists , Receptor, IGF Type 1/metabolism , Ribosomes/drug effects , Ribosomes/genetics , Ribosomes/metabolism , Xenograft Model Antitumor Assays
3.
Nat Commun ; 11(1): 1957, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32327644

ABSTRACT

Action control is a key brain function determining the survival of animals in their environment. In mammals, neurons expressing dopamine D2 receptors (D2R) in the dorsal striatum (DS) and the nucleus accumbens (Acb) jointly but differentially contribute to the fine regulation of movement. However, their region-specific molecular features are presently unknown. By combining RNAseq of striatal D2R neurons and histological analyses, we identified hundreds of novel region-specific molecular markers, which may serve as tools to target selective subpopulations. As a proof of concept, we characterized the molecular identity of a subcircuit defined by WFS1 neurons and evaluated multiple behavioral tasks after its temporally-controlled deletion of D2R. Consequently, conditional D2R knockout mice displayed a significant reduction in digging behavior and an exacerbated hyperlocomotor response to amphetamine. Thus, targeted molecular analyses reveal an unforeseen heterogeneity in D2R-expressing striatal neuronal populations, underlying specific D2R's functional features in the control of specific motor behaviors.


Subject(s)
Neostriatum/cytology , Neurons/physiology , Nucleus Accumbens/cytology , Receptors, Dopamine D2/metabolism , Amphetamine/pharmacology , Animals , Biomarkers/metabolism , Corpus Striatum/cytology , Corpus Striatum/metabolism , Corpus Striatum/physiology , Dopamine Agents/pharmacology , Membrane Proteins/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Motor Activity/drug effects , Motor Activity/genetics , Neostriatum/metabolism , Neostriatum/physiology , Neural Pathways , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiology , Receptors, Dopamine D2/genetics
4.
Brain Struct Funct ; 222(4): 1897-1911, 2017 May.
Article in English | MEDLINE | ID: mdl-27678395

ABSTRACT

In the hippocampus, a functional role of dopamine D1 receptors (D1R) in synaptic plasticity and memory processes has been suggested by electrophysiological and pharmacological studies. However, comprehension of their function remains elusive due to the lack of knowledge on the precise localization of D1R expression among the diversity of interneuron populations. Using BAC transgenic mice expressing enhanced green fluorescent protein under the control of D1R promoter, we examined the molecular identity of D1R-containing neurons within the CA1 subfield of the dorsal hippocampus. In agreement with previous findings, our analysis revealed that these neurons are essentially GABAergic interneurons, which express several neurochemical markers, including calcium-binding proteins, neuropeptides, and receptors among others. Finally, by using different tools comprising cell type-specific isolation of mRNAs bound to tagged-ribosomes, we provide solid data indicating that D1R is present in a large proportion of interneurons expressing dopamine D2 receptors. Altogether, our study indicates that D1Rs are expressed by different classes of interneurons in all layers examined and not by pyramidal cells, suggesting that CA1 D1R mostly acts via modulation of GABAergic interneurons.


Subject(s)
CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/metabolism , GABAergic Neurons/metabolism , Interneurons/metabolism , Receptors, Dopamine D1/analysis , Animals , Female , Male , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Receptors, Dopamine D2/analysis
5.
Front Mol Neurosci ; 10: 419, 2017.
Article in English | MEDLINE | ID: mdl-29311811

ABSTRACT

The phosphorylation of the ribosomal protein S6 (rpS6) is widely used to track neuronal activity. Although it is generally assumed that rpS6 phosphorylation has a stimulatory effect on global protein synthesis in neurons, its exact biological function remains unknown. By using a phospho-deficient rpS6 knockin mouse model, we directly tested the role of phospho-rpS6 in mRNA translation, plasticity and behavior. The analysis of multiple brain areas shows for the first time that, in neurons, phospho-rpS6 is dispensable for overall protein synthesis. Instead, we found that phospho-rpS6 controls the translation of a subset of mRNAs in a specific brain region, the nucleus accumbens (Acb), but not in the dorsal striatum. We further show that rpS6 phospho-mutant mice display altered long-term potentiation (LTP) in the Acb and enhanced novelty-induced locomotion. Collectively, our findings suggest a previously unappreciated role of phospho-rpS6 in the physiology of the Acb, through the translation of a selective subclass of mRNAs, rather than the regulation of general protein synthesis.

6.
Front Mol Neurosci ; 9: 165, 2016.
Article in English | MEDLINE | ID: mdl-28119566

ABSTRACT

Repeated psychostimulant exposure induces persistent gene expression modifications that contribute to enduring changes in striatal GABAergic spiny projecting neurons (SPNs). However, it remains unclear whether changes in the control of mRNA translation are required for the establishment of these durable modifications. Here we report that repeated exposure to D-amphetamine decreases global striatal mRNA translation. This effect is paralleled by an enhanced phosphorylation of the translation factors, eIF2α and eEF2, and by the concomitant increased translation of a subset of mRNAs, among which the mRNA encoding for the activity regulated cytoskeleton-associated protein, also known as activity regulated gene 3.1 (Arc/Arg3.1). The enrichment of Arc/Arg3.1 mRNA in the polysomal fraction is accompanied by a robust increase of Arc/Arg3.1 protein levels within the striatum. Immunofluorescence analysis revealed that this increase occurred preferentially in D1R-expressing SPNs localized in striosome compartments. Our results suggest that the decreased global protein synthesis following repeated exposure to D-amphetamine favors the translation of a specific subset of mRNAs in the striatum.

SELECTION OF CITATIONS
SEARCH DETAIL
...