Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Brain Inj ; : 1-7, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335246

ABSTRACT

OBJECTIVE: While recovery from concussion is variable, women are more likely to report symptoms, experience worse outcomes, and have longer recovery trajectories following concussion than men. Preliminary data suggest that hormonal fluctuations, specifically progesterone, may be associated with this variability. This study aimed to understand the effect of contraceptive medication on concussion recovery. METHODS: A retrospective chart review using consensus-based common data elements was conducted at 11 NCAA institutions as part of the LIMBIC MATARS consortium. Participants included female collegiate athletes diagnosed with a concussion who did (n = 117) or did not report (n = 339) contraceptive medication use. Number of days between diagnosis and symptom resolution were compared using Mann-Whitney U tests. Self-reported diagnosis of attention deficit hyperactivity disorder, concussion history, anxiety, and depression was compared using Chi-squared tests. RESULTS: The proportions of participants who did or did not take contraceptive medication were similar across covariates. Female athletes regardless of contraceptive medication use recovered similarly following a concussion. CONCLUSIONS: Our findings suggest that contraceptive medication use did not significantly impact concussion recovery. Future prospective investigations should examine documentation practices and operationalize terminology for hormonal contraceptive medication to better understand their role on recovery from sport-related concussion in female collegiate athletes.

2.
J Neurotrauma ; 41(5-6): 571-586, 2024 03.
Article in English | MEDLINE | ID: mdl-37974423

ABSTRACT

Concussions present with a myriad of symptomatic and cognitive concerns; however, the relationship between these functional disruptions and the underlying changes in the brain are not yet well understood. Hubs, or brain regions that are connected to many different functional networks, may be specifically disrupted after concussion. Given the implications in concussion research, we quantified hub disruption within the default mode network (DMN) and between the DMN and other brain networks. We collected resting-state functional magnetic resonance imaging data from collegiate student-athletes (n = 44) at three time points: baseline (before beginning their athletic season), acute post-injury (approximately 48h after a diagnosed concussion), and recovery (after starting return-to-play progression, but before returning to contact). We used self-reported symptoms and computerized cognitive assessments collected across similar time points to link these functional connectivity changes to clinical outcomes. Concussion resulted in increased connectivity between regions within the DMN compared with baseline and recovery, and this post-injury connectivity was more positively related to symptoms and more negatively related to visual memory performance compared with baseline and recovery. Further, concussion led to decreased connectivity between DMN hubs and visual network non-hubs relative to baseline and recovery, and this post-injury connectivity was more negatively related to somatic symptoms and more positively related to visual memory performance compared with baseline and recovery. Relationships between functional connectivity, symptoms, and cognition were not significantly different at baseline versus recovery. These results highlight a unique relationship between self-reported symptoms, visual memory performance, and acute functional connectivity changes involving DMN hubs after concussion in athletes. This may provide evidence for a disrupted balance of within- and between-network communication highlighting possible network inefficiencies after concussion. These results aid in our understanding of the pathophysiological disruptions after concussion and inform our understanding of the associations between disruptions in brain connectivity and specific clinical presentations acutely post-injury.


Subject(s)
Brain Concussion , Default Mode Network , Humans , Brain Concussion/diagnostic imaging , Cognition , Brain/diagnostic imaging , Athletes
3.
Neuropsychopharmacology ; 48(2): 317-326, 2023 01.
Article in English | MEDLINE | ID: mdl-36209230

ABSTRACT

Cortical thickness changes dramatically during development and is associated with adolescent drinking. However, previous findings have been inconsistent and limited by region-of-interest approaches that are underpowered because they do not conform to the underlying spatially heterogeneous effects of alcohol. In this study, adolescents (n = 657; 12-22 years at baseline) from the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) study who endorsed little to no alcohol use at baseline were assessed with structural magnetic resonance imaging and followed longitudinally at four yearly intervals. Seven unique spatial patterns of covarying cortical thickness were obtained from the baseline scans by applying an unsupervised machine learning method called non-negative matrix factorization (NMF). The cortical thickness maps of all participants' longitudinal scans were projected onto vertex-level cortical patterns to obtain participant-specific coefficients for each pattern. Linear mixed-effects models were fit to each pattern to investigate longitudinal effects of alcohol consumption on cortical thickness. We found in six NMF-derived cortical thickness patterns, the longitudinal rate of decline in no/low drinkers was similar for all age cohorts. Among moderate drinkers the decline was faster in the younger adolescent cohort and slower in the older cohort. Among heavy drinkers the decline was fastest in the younger cohort and slowest in the older cohort. The findings suggested that unsupervised machine learning successfully delineated spatially coordinated patterns of vertex-level cortical thickness variation that are unconstrained by neuroanatomical features. Age-appropriate cortical thinning is more rapid in younger adolescent drinkers and slower in older adolescent drinkers, an effect that is strongest among heavy drinkers.


Subject(s)
Underage Drinking , Adolescent , Humans , Aged , Unsupervised Machine Learning , Cerebral Cortical Thinning , Alcohol Drinking , Magnetic Resonance Imaging , Ethanol , Longitudinal Studies
4.
Hum Brain Mapp ; 43(8): 2653-2667, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35289463

ABSTRACT

Mild Traumatic brain injury (mTBI) is a signature wound in military personnel, and repetitive mTBI has been linked to age-related neurogenerative disorders that affect white matter (WM) in the brain. However, findings of injury to specific WM tracts have been variable and inconsistent. This may be due to the heterogeneity of mechanisms, etiology, and comorbid disorders related to mTBI. Non-negative matrix factorization (NMF) is a data-driven approach that detects covarying patterns (components) within high-dimensional data. We applied NMF to diffusion imaging data from military Veterans with and without a self-reported TBI history. NMF identified 12 independent components derived from fractional anisotropy (FA) in a large dataset (n = 1,475) gathered through the ENIGMA (Enhancing Neuroimaging Genetics through Meta-Analysis) Military Brain Injury working group. Regressions were used to examine TBI- and mTBI-related associations in NMF-derived components while adjusting for age, sex, post-traumatic stress disorder, depression, and data acquisition site/scanner. We found significantly stronger age-dependent effects of lower FA in Veterans with TBI than Veterans without in four components (q < 0.05), which are spatially unconstrained by traditionally defined WM tracts. One component, occupying the most peripheral location, exhibited significantly stronger age-dependent differences in Veterans with mTBI. We found NMF to be powerful and effective in detecting covarying patterns of FA associated with mTBI by applying standard parametric regression modeling. Our results highlight patterns of WM alteration that are differentially affected by TBI and mTBI in younger compared to older military Veterans.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Brain Injuries , Military Personnel , Stress Disorders, Post-Traumatic , Veterans , White Matter , Brain/diagnostic imaging , Brain Concussion/diagnostic imaging , Brain Injuries/etiology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Humans , Multivariate Analysis , Stress Disorders, Post-Traumatic/complications , White Matter/diagnostic imaging
5.
Front Psychol ; 12: 686330, 2021.
Article in English | MEDLINE | ID: mdl-34262512

ABSTRACT

Objective: The majority of combat-related head injuries are associated with blast exposure. While Veterans with mild traumatic brain injury (mTBI) report cognitive complaints and exhibit poorer neuropsychological performance, there is little evidence examining the effects of subconcussive blast exposure, which does not meet clinical symptom criteria for mTBI during the acute period following exposure. We compared chronic effects of combat-related blast mTBI and combat-related subconcussive blast exposure on neuropsychological performance in Veterans. Methods: Post-9/11 Veterans with combat-related subconcussive blast exposure (n = 33), combat-related blast mTBI (n = 26), and controls (n = 33) without combat-related blast exposure, completed neuropsychological assessments of intellectual and executive functioning, processing speed, and working memory via NIH toolbox, assessment of clinical psychopathology, a retrospective account of blast exposures and non-blast-related head injuries, and self-reported current medication. Huber Robust Regressions were employed to compare neuropsychological performance across groups. Results: Veterans with combat-related blast mTBI and subconcussive blast exposure displayed significantly slower processing speed compared with controls. After adjusting for post-traumatic stress disorder and depressive symptoms, those with combat-related mTBI exhibited slower processing speed than controls. Conclusion: Veterans in the combat-related blast mTBI group exhibited slower processing speed relative to controls even when controlling for PTSD and depression. Cognition did not significantly differ between subconcussive and control groups or subconcussive and combat-related blast mTBI groups. Results suggest neurocognitive assessment may not be sensitive enough to detect long-term effects of subconcussive blast exposure, or that psychiatric symptoms may better account for cognitive sequelae following combat-related subconcussive blast exposure or combat-related blast mTBI.

6.
Brain Imaging Behav ; 15(2): 585-613, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33409819

ABSTRACT

Traumatic brain injury (TBI) is common among military personnel and the civilian population and is often followed by a heterogeneous array of clinical, cognitive, behavioral, mood, and neuroimaging changes. Unlike many neurological disorders that have a characteristic abnormal central neurologic area(s) of abnormality pathognomonic to the disorder, a sufficient head impact may cause focal, multifocal, diffuse or combination of injury to the brain. This inconsistent presentation makes it difficult to establish or validate biological and imaging markers that could help improve diagnostic and prognostic accuracy in this patient population. The purpose of this manuscript is to describe both the challenges and opportunities when conducting military-relevant TBI research and introduce the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Military Brain Injury working group. ENIGMA is a worldwide consortium focused on improving replicability and analytical power through data sharing and collaboration. In this paper, we discuss challenges affecting efforts to aggregate data in this patient group. In addition, we highlight how "big data" approaches might be used to understand better the role that each of these variables might play in the imaging and functional phenotypes of TBI in Service member and Veteran populations, and how data may be used to examine important military specific issues such as return to duty, the late effects of combat-related injury, and alteration of the natural aging processes.


Subject(s)
Brain Injuries, Traumatic , Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Brain Injuries, Traumatic/diagnostic imaging , Humans , Magnetic Resonance Imaging
7.
Biomed Environ Sci ; 33(8): 614-619, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32933613

ABSTRACT

This study aimed to understand the differences in clinical, epidemiological, and laboratory features between the new coronavirus disease 2019 (COVID-2019) and influenza A in children. Data of 23 hospitalized children with COVID-19 (9 boys, 5.7 ± 3.8 years old) were compared with age- and sex-matched 69 hospitalized and 69 outpatient children with influenza A from a hospital in China. The participants' epidemiological history, family cluster, clinical manifestations, and blood test results were assessed. Compared with either inpatients or outpatients with influenza A, children with COVID-19 showed significantly more frequent family infections and higher ratio of low fever (< 37.3 °C), but shorter cough and fever duration, lower body temperature, and lower rates of cough, fever, high fever (> 39 °C), nasal congestion, rhinorrhea, sore throat, vomiting, myalgia or arthralgia, and febrile seizures. They also showed higher counts of lymphocytes, T lymphocyte CD8, and platelets and levels of cholinesterase, aspartate aminotransferase, lactate dehydrogenase, and lactic acid, but lower serum amyloid, C-reactive protein, and fibrinogen levels and erythrocyte sedimentation rate, and shorter prothrombin time. The level of alanine aminotransferase in children with COVID-19 is lower than that in inpatients but higher than that in outpatients with influenza A. Pediatric COVID-19 is associated with more frequent family infection, milder symptoms, and milder immune responses relative to pediatric influenza A.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Influenza, Human/epidemiology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , COVID-19 , Case-Control Studies , Child , Coronavirus Infections/blood , Coronavirus Infections/immunology , Female , Humans , Influenza, Human/blood , Influenza, Human/immunology , Male , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...