Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 6: 10064, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26648114

ABSTRACT

Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa2Cu3O6.54 at its superconducting transition temperature ∼ 60 K. We find that the CDWs in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO2 planes, and are out of phase with each other. The planar oxygen atoms have the largest displacements, perpendicular to the CuO2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For instance, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements.

2.
Rev Sci Instrum ; 86(10): 103901, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26520965

ABSTRACT

A new materials characterization system developed at the XMaS beamline, located at the European Synchrotron Radiation Facility in France, is presented. We show that this new capability allows to measure the atomic structural evolution (crystallography) of piezoelectric materials whilst simultaneously measuring the overall strain characteristics and electrical response to dynamically (ac) applied external stimuli.

3.
J Phys Condens Matter ; 24(45): 455401, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23085778

ABSTRACT

The structure of BaMg(1/3)Ta(2/3)O(3) (BMT) has been studied using x-ray scattering. The phonons have been measured and the results are similar to those of other materials with a perovskite structure such as PbMg(1/3)Nb(2/3)O(3) (PMN). The acoustic and lowest energy optic branches were measured but it was not possible to measure the branches of higher energy, possibly this is because they largely consist of oxygen motions. High-resolution inelastic measurements also showed that the diffuse scattering was strictly elastic and not directly related to the phonon spectra. Diffuse scattering was observed in BMT near the (H ± 1/2, K ± 1/2, L ± 1/2) points in the Brillouin zone and these had a characteristic cube shape. This arises from ordering of the B-site ions in BMT. Additional experiments revealed the diffuse scattering in BMT similar in shape to Bragg reflections at wavevectors of the form (H ± 1/3, K ± 1/3, L ± 1/3). Such reflections were also observed by Lufaso (2004 Chem. Mater. 16 2148) from powders and suggest that this structure of BMT consists of four differently oriented domains of a trigonal structure and results from a different ordering of the B-site ions from that responsible for the scattering at the (H ± 1/2, K ± 1/2, L ± 1/2) points. The results lead us to suggest that for BMT single crystals the bulk has the properties of a cubic perovskite, whereas the surface may have quite different structure from that of the bulk. This difference resembles the behaviour of cubic relaxors like PMN and PMN doped by PbTiO(3), where significant surface effects have been reported.

4.
Anal Chem ; 84(11): 4866-72, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22568435

ABSTRACT

We have developed and tested two complementary methods for making time-lapse synchrotron X-ray diffraction (XRD) measurements of the growth of synthetic corrosion layers using a protocol for producing copper(I) chloride (nantokite), on copper as a test. In the first method, a copper coupon was spin-coated with saturated copper(II) chloride solution in air while the surface was characterized in real time using XRD with a fast one-dimensional (1-D) detector. In the second, a droplet of the same reagent was suspended from an X-ray-transparent window in a hermetically sealed cell and the coupon was brought into contact with this while XRD diffractograms were acquired with a charge-coupled device (CCD) camera. The protocol is completed by a deionized water rinse, which was also studied. The XRD shows nantokite precipitation in solution as well as growth on the surface, but the end products were variable proportions of nantokite, cuprite (Cu(2)O), and paratacamite (Cu(2)(OH)(3)Cl). The latter two were observed forming in a reaction between the nantokite and the rinsing water. Comparisons between samples analyzed in the synchrotron and at lower power densities show that the effects of any radiolysis or slight heating of the sample are insignificant in this case. It would be simple to extend these methods to other corrosion or surface reaction systems.

5.
Phys Rev Lett ; 99(24): 247401, 2007 Dec 14.
Article in English | MEDLINE | ID: mdl-18233487

ABSTRACT

We report measured dipolar asymmetry ratios at the LIII edges of the heavy rare-earth metals. The results are compared with a first-principles calculation and excellent agreement is found. A simple model of the scattering is developed, enabling us to reinterpret the resonant x-ray scattering in these materials and to identify the peaks in the asymmetry ratios with features in the spin and orbital moment densities.

6.
J Synchrotron Radiat ; 10(Pt 2): 172-6, 2003 Mar 01.
Article in English | MEDLINE | ID: mdl-12606796

ABSTRACT

Two phase plates, a 0.78 mm-thick natural diamond and a 0.3 mm-thick synthetic diamond, were used to convert linearly polarized X-rays into a circularly polarized beam, to cover an energy range of 3-9 keV. The performance of these plates followed theoretical predictions as indicated by polarization analyses and X-ray magnetic circular dichroism measurements. The use of the device is illustrated by resonant magnetic reflectivity measurements on UAs/Co multilayers.

7.
J Synchrotron Radiat ; 8(Pt 6): 1172-81, 2001 Nov 01.
Article in English | MEDLINE | ID: mdl-11679768

ABSTRACT

The beamline, which is situated on a bending magnet at ESRF, comprises a unique combination of instrumentation for high-resolution and magnetic single-crystal diffraction. White-beam operation is possible, as well as focused and unfocused monochromatic modes. In addition to an eleven-axis Huber diffractometer, which facilitates simple operation in both vertical and horizontal scattering geometries, there is an in-vacuum polarization analyser and slit system, mirrors for harmonic rejection, sub 4.2 K and 1 Tesla magnetic field sample environment, plus a diamond phase plate for polarization conditioning. The instrumentation developed specifically for this beamline is described, and its use illustrated by recent scientific results.

SELECTION OF CITATIONS
SEARCH DETAIL