Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Cell Rep ; 43(6): 114260, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38838225

ABSTRACT

Immunotherapy remains underexploited in acute myeloid leukemia (AML) compared to other hematological malignancies. Currently, gemtuzumab ozogamicin is the only therapeutic antibody approved for this disease. Here, to identify potential targets for immunotherapeutic intervention, we analyze the surface proteome of 100 genetically diverse primary human AML specimens for the identification of cell surface proteins and conduct single-cell transcriptome analyses on a subset of these specimens to assess antigen expression at the sub-population level. Through this comprehensive effort, we successfully identify numerous antigens and markers preferentially expressed by primitive AML cells. Many identified antigens are targeted by therapeutic antibodies currently under clinical evaluation for various cancer types, highlighting the potential therapeutic value of the approach. Importantly, this initiative uncovers AML heterogeneity at the surfaceome level, identifies several antigens and potential primitive cell markers characterizing AML subgroups, and positions immunotherapy as a promising approach to target AML subgroup specificities.


Subject(s)
Immunotherapy , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/pathology , Immunotherapy/methods , Membrane Proteins/metabolism
2.
Blood Adv ; 6(2): 509-514, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34731885

ABSTRACT

Cholesterol homeostasis has been proposed as one mechanism contributing to chemoresistance in AML and hence, inclusion of statins in therapeutic regimens as part of clinical trials in AML has shown encouraging results. Chemical screening of primary human AML specimens by our group led to the identification of lipophilic statins as potent inhibitors of AMLs from a wide range of cytogenetic groups. Genetic screening to identify modulators of the statin response uncovered the role of protein geranylgeranylation and of RAB proteins, coordinating various aspect of vesicular trafficking, in mediating the effects of statins on AML cell viability. We further show that statins can inhibit vesicle-mediated transport in primary human specimens, and that statins sensitive samples show expression signatures reminiscent of enhanced vesicular trafficking. Overall, this study sheds light into the mechanism of action of statins in AML and identifies a novel vulnerability for cytogenetically diverse AML.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Leukemia, Myeloid, Acute , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics
3.
Blood ; 135(21): 1882-1886, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32315381

ABSTRACT

RUNX1 is mutated in ∼10% of adult acute myeloid leukemia (AML). Although most RUNX1 mutations in this disease are believed to be acquired, they can also be germline. Indeed, germline RUNX1 mutations result in the well-described autosomal-dominant familial platelet disorder with predisposition to hematologic malignancies (RUNX1-FPD, FPD/AML, FPDMM); ∼44% of affected individuals progress to AML or myelodysplastic syndromes. Using the Leucegene RUNX1 AML patient group, we sought to investigate the proportion of germline vs acquired RUNX1 mutations in this cohort. Our results showed that 30% of RUNX1 mutations in our AML cohort are germline. Molecular profiling revealed higher frequencies of NRAS mutations and other mutations known to activate various signaling pathways in these patients with RUNX1 germline-mutated AML. Moreover, 2 patients (mother and son) had co-occurrence of RUNX1 and CEBPA germline mutations, with variable AML disease onset at 59 and 27 years, respectively. Together, these data suggest a higher than anticipated frequency of germline RUNX1 mutations in the Leucegene cohort and further highlight the importance of testing for RUNX1 mutations in instances in which allogeneic stem cell transplantation using a related donor is envisioned.


Subject(s)
Biomarkers, Tumor/genetics , CCAAT-Enhancer-Binding Proteins/genetics , Core Binding Factor Alpha 2 Subunit/genetics , GATA2 Transcription Factor/genetics , Germ-Line Mutation , Leukemia, Myeloid, Acute/genetics , Mutation , Adult , Aged , Female , Follow-Up Studies , Humans , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Prognosis
4.
Leukemia ; 34(1): 63-74, 2020 01.
Article in English | MEDLINE | ID: mdl-31300747

ABSTRACT

Acute myeloid leukemias (AML) with mutations in the NPM1 gene (NPM1c+) represent a large AML subgroup with varying response to conventional treatment, highlighting the need to develop targeted therapeutic strategies for this disease. We screened a library of clinical drugs on a cohort of primary human AML specimens and identified the BCL2 inhibitor ABT-199 as a selective agent against NPM1c+ AML. Mutational analysis of ABT-199-sensitive and -resistant specimens identified mutations in NPM1, RAD21, and IDH1/IDH2 as predictors of ABT-199 sensitivity. Comparative transcriptome analysis further uncovered BCL2A1 as a potential mediator of ABT-199 resistance in AML. In line with our observation that RAD21 mutation confers sensitivity to ABT-199, we provide functional evidence that reducing RAD21 levels can sensitize AML cells to BCL2 inhibition. Moreover, we demonstrate that ABT-199 is able to produce selective anti-AML activity in vivo toward AML with mutations associated with compound sensitivity in PDX models. Overall, this study delineates the contribution of several genetic events to the response to ABT-199 and provides a rationale for the development of targeted therapies for NPM1c+ AML.


Subject(s)
Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drug Resistance, Neoplasm/genetics , Leukemia, Myeloid, Acute/genetics , Minor Histocompatibility Antigens/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Sulfonamides/pharmacology , Humans , Leukemia, Myeloid, Acute/drug therapy , Mutation , Nuclear Proteins/genetics , Nucleophosmin , Tumor Cells, Cultured
5.
Cancer Cell ; 36(1): 84-99.e8, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31287994

ABSTRACT

To identify therapeutic targets in acute myeloid leukemia (AML), we chemically interrogated 200 sequenced primary specimens. Mubritinib, a known ERBB2 inhibitor, elicited strong anti-leukemic effects in vitro and in vivo. In the context of AML, mubritinib functions through ubiquinone-dependent inhibition of electron transport chain (ETC) complex I activity. Resistance to mubritinib characterized normal CD34+ hematopoietic cells and chemotherapy-sensitive AMLs, which displayed transcriptomic hallmarks of hypoxia. Conversely, sensitivity correlated with mitochondrial function-related gene expression levels and characterized a large subset of chemotherapy-resistant AMLs with oxidative phosphorylation (OXPHOS) hyperactivity. Altogether, our work thus identifies an ETC complex I inhibitor and reveals the genetic landscape of OXPHOS dependency in AML.


Subject(s)
Antineoplastic Agents/pharmacology , Electron Transport Complex I/antagonists & inhibitors , Leukemia, Myeloid, Acute/metabolism , Oxazoles/pharmacology , Oxidative Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Triazoles/pharmacology , Animals , Biomarkers , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Hematopoiesis/drug effects , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Mice , Models, Biological , Receptor, ErbB-2/antagonists & inhibitors
6.
Clin Cancer Res ; 23(22): 6969-6981, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28855357

ABSTRACT

Purpose:RUNX1-mutated (RUNX1mut) acute myeloid leukemia (AML) is associated with adverse outcome, highlighting the urgent need for a better genetic characterization of this AML subgroup and for the design of efficient therapeutic strategies for this disease. Toward this goal, we further dissected the mutational spectrum and gene expression profile of RUNX1mut AML and correlated these results to drug sensitivity to identify novel compounds targeting this AML subgroup.Experimental Design: RNA-sequencing of 47 RUNX1mut primary AML specimens was performed and sequencing results were compared to those of RUNX1 wild-type samples. Chemical screens were also conducted using RUNX1mut specimens to identify compounds selectively affecting the viability of RUNX1mut AML.Results: We show that samples with no remaining RUNX1 wild-type allele are clinically and genetically distinct and display a more homogeneous gene expression profile. Chemical screening revealed that most RUNX1mut specimens are sensitive to glucocorticoids (GCs) and we confirmed that GCs inhibit AML cell proliferation through their interaction with the glucocorticoid receptor (GR). We observed that specimens harboring RUNX1 mutations expected to result in low residual RUNX1 activity are most sensitive to GCs, and that coassociating mutations as well as GR levels contribute to GC sensitivity. Accordingly, acquired glucocorticoid sensitivity was achieved by negatively regulating RUNX1 expression in human AML cells.Conclusions: Our findings show the profound impact of RUNX1 allele dosage on gene expression profile and glucocorticoid sensitivity in AML, thereby opening opportunities for preclinical testing which may lead to drug repurposing and improved disease characterization. Clin Cancer Res; 23(22); 6969-81. ©2017 AACR.


Subject(s)
Alleles , Core Binding Factor Alpha 2 Subunit/genetics , Drug Resistance, Neoplasm/genetics , Gene Dosage , Glucocorticoids/pharmacology , Leukemia, Myeloid, Acute/genetics , Mutation , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Female , Gene Expression Regulation, Leukemic , Gene Silencing , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged
7.
FASEB J ; 31(11): 5012-5018, 2017 11.
Article in English | MEDLINE | ID: mdl-28754713

ABSTRACT

The ubiquitin-associated protein 2-like (UBAP2L) gene remains poorly studied in human and mouse development. UBAP2L interacts with the Polycomb group protein B lymphoma Mo-MLV insertion region 1 homolog (BMI1) and determines the activity of mouse hematopoietic stem cells in vivo Here we show that loss of Ubap2l leads to disorganized respiratory epithelium of mutant neonates, which die of respiratory failure. We also show that UBAP2L overexpression leads to epithelial-mesenchymal transition-like phenotype in a non-small cell lung carcinoma (NSCLC) cell line. UBAP2L is amplified in 15% of human primary lung adenocarcinoma specimens. Such patients express higher levels of UBAP2L and show a reduction in survival when compared with those who do not have this gene amplification. Supporting a possible role for UBAP2L in lung tumor progression, NSCLC cells engineered to express low levels of this gene produce much smaller tumors in vivo than wild-type control cells. Together, these results suggest that UBAP2L contributes to epithelial lung cell identity in mice and that it plays an important role in human lung adenocarcinoma.-Aucagne, R., Girard, S., Mayotte, N., Lehnertz, B., Lopes-Paciencia, S., Gendron, P., Boucher, G., Chagraoui, J., Sauvageau, G. UBAP2L is amplified in a large subset of human lung adenocarcinoma and is critical for epithelial lung cell identity and tumor metastasis.


Subject(s)
Adenocarcinoma/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carrier Proteins/biosynthesis , Epithelial Cells/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/metabolism , Neoplasm Proteins/biosynthesis , Respiratory Mucosa/metabolism , A549 Cells , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carrier Proteins/genetics , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Mice , Neoplasm Metastasis , Neoplasm Proteins/genetics , Respiratory Mucosa/pathology
8.
Nucleic Acids Res ; 45(13): e122, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28472340

ABSTRACT

Genome-wide transcriptome profiling has enabled non-supervised classification of tumours, revealing different sub-groups characterized by specific gene expression features. However, the biological significance of these subtypes remains for the most part unclear. We describe herein an interactive platform, Minimum Spanning Trees Inferred Clustering (MiSTIC), that integrates the direct visualization and comparison of the gene correlation structure between datasets, the analysis of the molecular causes underlying co-variations in gene expression in cancer samples, and the clinical annotation of tumour sets defined by the combined expression of selected biomarkers. We have used MiSTIC to highlight the roles of specific transcription factors in breast cancer subtype specification, to compare the aspects of tumour heterogeneity targeted by different prognostic signatures, and to highlight biomarker interactions in AML. A version of MiSTIC preloaded with datasets described herein can be accessed through a public web server (http://mistic.iric.ca); in addition, the MiSTIC software package can be obtained (github.com/iric-soft/MiSTIC) for local use with personalized datasets.


Subject(s)
Biomarkers, Tumor/genetics , Databases, Genetic/statistics & numerical data , Gene Expression Profiling/statistics & numerical data , Transcriptome/genetics , Biomarkers, Tumor/classification , Breast Neoplasms/classification , Breast Neoplasms/genetics , Cluster Analysis , Computational Biology , Female , Genome-Wide Association Study/statistics & numerical data , Humans , Leukemia, Myeloid, Acute/classification , Leukemia, Myeloid, Acute/genetics , Multigene Family , Prognosis , Software
9.
Sci Rep ; 6: 34019, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27659694

ABSTRACT

Based on transcriptomic analyses of thousands of samples from The Cancer Genome Atlas, we report that expression of constitutive proteasome (CP) genes (PSMB5, PSMB6, PSMB7) and immunoproteasome (IP) genes (PSMB8, PSMB9, PSMB10) is increased in most cancer types. In breast cancer, expression of IP genes was determined by the abundance of tumor infiltrating lymphocytes and high expression of IP genes was associated with longer survival. In contrast, IP upregulation in acute myeloid leukemia (AML) was a cell-intrinsic feature that was not associated with longer survival. Expression of IP genes in AML was IFN-independent, correlated with the methylation status of IP genes, and was particularly high in AML with an M5 phenotype and/or MLL rearrangement. Notably, PSMB8 inhibition led to accumulation of polyubiquitinated proteins and cell death in IPhigh but not IPlow AML cells. Co-clustering analysis revealed that genes correlated with IP subunits in non-M5 AMLs were primarily implicated in immune processes. However, in M5 AML, IP genes were primarily co-regulated with genes involved in cell metabolism and proliferation, mitochondrial activity and stress responses. We conclude that M5 AML cells can upregulate IP genes in a cell-intrinsic manner in order to resist cell stress.

10.
Blood ; 127(24): 3054-61, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27034432

ABSTRACT

In this study, we analyzed RNA-sequencing data of 14 samples characterized by biallelic CEBPA (CEBPA(bi)) mutations included in the Leucegene collection of 415 primary acute myeloid leukemia (AML) specimens, and describe for the first time high frequency recurrent mutations in the granulocyte colony-stimulating factor receptor gene CSF3R, which signals through JAK-STAT proteins. Chemical interrogation of these primary human specimens revealed a uniform and specific sensitivity to all JAK inhibitors tested irrespective of their CSF3R mutation status, indicating a general sensitization of JAK-STAT signaling in this leukemia subset. Altogether, these results identified the co-occurrence of mutations in CSF3R and CEBPA in a well-defined AML subset, which uniformly responds to JAK inhibitors and paves the way to personalized clinical trials for this disease.


Subject(s)
CCAAT-Enhancer-Binding Proteins/genetics , Drug Resistance, Neoplasm/genetics , Janus Kinases/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Protein Kinase Inhibitors/therapeutic use , Receptors, Colony-Stimulating Factor/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , DNA Mutational Analysis/methods , Drug Screening Assays, Antitumor , Female , Gene Expression Profiling , Gene Frequency , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myeloid, Acute/classification , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Mutation , Precision Medicine , Transcriptome , Tumor Cells, Cultured , Young Adult
12.
Blood ; 127(16): 2018-27, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-26834243

ABSTRACT

Acute myeloid leukemia (AML) is a genetically heterogeneous hematologic malignancy, which is initiated and driven by a rare fraction of leukemia stem cells (LSCs). Despite the difficulties of identifying a common LSC phenotype, there is increasing evidence that high expression of stem cell gene signatures is associated with poor clinical outcome. Identification of functionally distinct subpopulations in this disease is therefore crucial to dissecting the molecular machinery underlying LSC self-renewal. Here, we combined next-generation sequencing technology with in vivo assessment of LSC frequencies and identified the adhesion G protein-coupled receptor 56 (GPR56) as a novel and stable marker for human LSCs for the majority of AML samples. High GPR56 expression was significantly associated with high-risk genetic subgroups and poor outcome. Analysis of GPR56 in combination with CD34 expression revealed engraftment potential of GPR56(+)cells in both the CD34(-)and CD34(+)fractions, thus defining a novel LSC compartment independent of the CD34(+)CD38(-)LSC phenotype.


Subject(s)
Biomarkers, Tumor/metabolism , Cell Proliferation , Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/pathology , Receptors, G-Protein-Coupled/metabolism , Adult , Animals , Cell Separation , Cells, Cultured , HEK293 Cells , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Mice , Mice, Inbred NOD , Mice, Transgenic , Neoplastic Stem Cells/physiology , Receptors, G-Protein-Coupled/physiology , Survival Analysis
13.
Nat Genet ; 47(9): 1030-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26237430

ABSTRACT

Using next-generation sequencing of primary acute myeloid leukemia (AML) specimens, we identified to our knowledge the first unifying genetic network common to the two subgroups of KMT2A (MLL)-rearranged leukemia, namely having MLL fusions or partial tandem duplications. Within this network, we experimentally confirmed upregulation of the gene with the most subtype-specific increase in expression, LOC100289656, and identified cryptic MLL fusions, including a new MLL-ENAH fusion. We also identified a subset of MLL fusion specimens carrying mutations in SPI1 accompanied by inactivation of its transcriptional network, as well as frequent RAS pathway mutations, which sensitized the leukemias to synthetic lethal interactions between MEK and receptor tyrosine kinase inhibitors. This transcriptomics-based characterization and chemical interrogation of human MLL-rearranged AML was a valuable approach for identifying complementary features that define this disease.


Subject(s)
Gene Expression Regulation, Leukemic , Histone-Lysine N-Methyltransferase/genetics , Leukemia, Myeloid, Acute/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Transcriptome , Animals , Antineoplastic Agents/pharmacology , Case-Control Studies , Drug Resistance, Neoplasm , Gene Regulatory Networks , Humans , Leukemia, Myeloid, Acute/metabolism , Mice, Inbred NOD , Mice, SCID , Mutation , Neoplasm Transplantation , Oncogene Proteins, Fusion/genetics , Translocation, Genetic , ras Proteins/genetics
14.
Mol Immunol ; 62(1): 63-70, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24967879

ABSTRACT

Long-term non-progressors (LTNP) represent a minority (1-5%) of HIV-infected individuals characterized by documented infection for more than 7-10 years, a stable CD4+ T cell count over 500/mm(3) and low viremia in the absence of antiretroviral treatment. Protective factors described so far such as the CCR5delta32 deletion, protective HLA alleles, or defective viruses fail to fully explain the partial protection phenotype. The existence of additional host resistance mechanisms in LTNP patients was investigated here using a whole human genome microarray study comparing gene expression profiles of unstimulated peripheral blood mononuclear cells from LTNP patients, HIV-1 infected patients under antiretroviral therapy with CD4+ T cell levels above 500/mm(3) (ST), as well as healthy individuals. Genes that were up- or downregulated exclusively in LTNP, ST or in both groups in comparison to controls were identified and classified in functional categories using Ingenuity Pathway Analysis. ST and LTNP patient groups revealed distinct genetic profiles, regarding gene number in each category and up- or downregulation of specific genes, which could have a bearing on the outcome of each group. We selected some relevant genes to validate the differential expression using quantitative real-time qRT-PCR. Among others, we found several genes related to the canonical Wnt/beta-catenin signaling pathway. Our results identify new possible host genes and molecules that could be involved in the mechanisms leading to the slower progression to AIDS and sustained CD4+ T cell counts that is peculiar to LTNP patients.


Subject(s)
Disease Resistance/genetics , HIV Infections/genetics , HIV Infections/immunology , HIV Long-Term Survivors , Transcriptome , CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Case-Control Studies , Disease Progression , Female , HIV Infections/virology , HIV-1/immunology , Humans , Male , Microarray Analysis , Viral Load
15.
Nat Commun ; 5: 3600, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24714562

ABSTRACT

For decades, the global impact of genomic polymorphisms on the repertoire of peptides presented by major histocompatibility complex (MHC) has remained a matter of speculation. Here we present a novel approach that enables high-throughput discovery of polymorphic MHC class I-associated peptides (MIPs), which play a major role in allorecognition. On the basis of comprehensive analyses of the genomic landscape of MIPs eluted from B lymphoblasts of two MHC-identical siblings, we show that 0.5% of non-synonymous single nucleotide variations are represented in the MIP repertoire. The 34 polymorphic MIPs found in our subjects are encoded by bi-allelic loci with dominant and recessive alleles. Our analyses show that, at the population level, 12% of the MIP-coding exome is polymorphic. Our method provides fundamental insights into the relationship between the genomic self and the immune self and accelerates the discovery of polymorphic MIPs (also known as minor histocompatibility antigens).


Subject(s)
Major Histocompatibility Complex/genetics , Peptides/chemistry , Polymorphism, Genetic/genetics , Alleles , Humans
16.
Nat Methods ; 11(4): 436-42, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24562423

ABSTRACT

Leukemic stem cells (LSCs) are considered a major cause of relapse in acute myeloid leukemia (AML). Defining pathways that control LSC self-renewal is crucial for a better understanding of underlying mechanisms and for the development of targeted therapies. However, currently available culture conditions do not prevent spontaneous differentiation of LSCs, which greatly limits the feasibility of cell-based assays. To overcome these constraints we conducted a high-throughput chemical screen and identified small molecules that inhibit differentiation and support LSC activity in vitro. Similar to reports with cord blood stem cells, several of these compounds suppressed the aryl-hydrocarbon receptor (AhR) pathway, which we show to be inactive in vivo and rapidly activated ex vivo in AML cells. We also identified a compound, UM729, that collaborates with AhR suppressors in preventing AML cell differentiation. Together, these findings provide newly defined culture conditions for improved ex vivo culture of primary human AML cells.


Subject(s)
Adenine/analogs & derivatives , Cell Culture Techniques/methods , Indoles/pharmacology , Leukemia/metabolism , Neoplastic Stem Cells/physiology , Pyrimidines/pharmacology , Adenine/pharmacology , Culture Media, Serum-Free , Drug Screening Assays, Antitumor , Humans , Leukemia, Myeloid, Acute , Molecular Structure
17.
Genes Dev ; 26(7): 651-6, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22431509

ABSTRACT

In this study, we show the high frequency of spontaneous γδ T-cell leukemia (T-ALL) occurrence in mice with biallelic deletion of enhancer of zeste homolog 2 (Ezh2). Tumor cells show little residual H3K27 trimethylation marks compared with controls. EZH2 is a component of the PRC2 Polycomb group protein complex, which is associated with DNA methyltransferases. Using next-generation sequencing, we identify alteration in gene expression levels of EZH2 and acquired mutations in PRC2-associated genes (DNMT3A and JARID2) in human adult T-ALL. Together, these studies document that deregulation of EZH2 and associated genes leads to the development of mouse, and likely human, T-ALL.


Subject(s)
DNA-Binding Proteins/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Leukemia-Lymphoma, Adult T-Cell/metabolism , Transcription Factors/metabolism , Acute Disease , Animals , DNA-Binding Proteins/genetics , Enhancer of Zeste Homolog 2 Protein , Histone-Lysine N-Methyltransferase/genetics , Humans , Leukemia-Lymphoma, Adult T-Cell/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Polycomb Repressive Complex 2 , Polycomb-Group Proteins , Protein Binding , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/genetics
18.
PLoS One ; 7(1): e30048, 2012.
Article in English | MEDLINE | ID: mdl-22291902

ABSTRACT

To identify novel biomarkers for HIV-1 resistance, including pathways that may be critical in anti-HIV-1 vaccine design, we carried out a gene expression analysis on blood samples obtained from HIV-1 highly exposed seronegatives (HESN) from a commercial sex worker cohort in Nairobi and compared their profiles to HIV-1 negative controls. Whole blood samples were collected from 43 HIV-1 resistant sex workers and a similar number of controls. Total RNA was extracted and hybridized to the Affymetrix HUG 133 Plus 2.0 micro arrays (Affymetrix, Santa Clara CA). Output data was analysed through ArrayAssist software (Agilent, San Jose CA). More than 2,274 probe sets were differentially expressed in the HESN as compared to the control group (fold change ≥1.3; p value ≤0.0001, FDR <0.05). Unsupervised hierarchical clustering of the differentially expressed genes readily distinguished HESNs from controls. Pathway analysis through the KEGG signaling database revealed a majority of the impacted pathways (13 of 15, 87%) had genes that were significantly down regulated. The most down expressed pathways were glycolysis/gluconeogenesis, pentose phosphate, phosphatidyl inositol, natural killer cell cytotoxicity and T-cell receptor signaling. Ribosomal protein synthesis and tight junction genes were up regulated. We infer that the hallmark of HIV-1 resistance is down regulation of genes in key signaling pathways that HIV-1 depends on for infection.


Subject(s)
Gene Expression Profiling , HIV Infections/immunology , HIV-1/immunology , Immunity, Innate/genetics , Lymphocyte Activation/genetics , Sex Workers , Cluster Analysis , Cohort Studies , Down-Regulation/genetics , Down-Regulation/immunology , Female , HIV Infections/genetics , Humans , Kenya , Lymphocyte Activation/immunology , Microarray Analysis , Reverse Transcriptase Polymerase Chain Reaction , Validation Studies as Topic
19.
Blood ; 119(19): 4349-57, 2012 May 10.
Article in English | MEDLINE | ID: mdl-22353997

ABSTRACT

The cell lineage origin of IFN-producing killer dendritic cells (IKDCs), which exhibit prominent antitumoral activity, has been subject to debate. Although IKDCs were first described as a cell type exhibiting both plasmacytoid DC and natural killer (NK) cell properties, the current view reflects that IKDCs merely represent activated NK cells expressing B220, which were thus renamed B220+ NK cells. Herein, we further investigate the lineage relation of B220+ NK cells with regard to other NK-cell subsets. We surprisingly find that, after adoptive transfer, B220- NK cells did not acquire B220 expression, even in the presence of potent activating stimuli. These findings strongly argue against the concept that B220+ NK cells are activated NK cells. Moreover, we unequivocally show that B220+ NK cells are highly proliferative and differentiate into mature NK cells after in vivo adoptive transfer. Additional phenotypic, functional, and transcriptional characterizations further define B220+ NK cells as immediate precursors to mature NK cells. The characterization of these novel attributes to B220+ NK cells will guide the identification of their ortholog in humans, contributing to the design of potent cancer immunotherapies.


Subject(s)
Cell Differentiation/immunology , Dendritic Cells/physiology , Interferons/metabolism , Killer Cells, Natural/physiology , Animals , Cell Differentiation/genetics , Dendritic Cells/cytology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation , Interferons/genetics , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Leukocyte Common Antigens/genetics , Leukocyte Common Antigens/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microarray Analysis
20.
Antimicrob Agents Chemother ; 55(5): 2212-23, 2011 May.
Article in English | MEDLINE | ID: mdl-21402859

ABSTRACT

Constitutive overexpression of the Mdr1 efflux pump is an important mechanism of acquired drug resistance in the yeast Candida albicans. The zinc cluster transcription factor Mrr1 is a central regulator of MDR1 expression, but other transcription factors have also been implicated in MDR1 regulation. To better understand how MDR1-mediated drug resistance is achieved in this fungal pathogen, we studied the interdependence of Mrr1 and two other MDR1 regulators, Upc2 and Cap1, in the control of MDR1 expression. A mutated, constitutively active Mrr1 could upregulate MDR1 and confer drug resistance in the absence of Upc2 or Cap1. On the other hand, Upc2 containing a gain-of-function mutation only slightly activated the MDR1 promoter, and this activation depended on the presence of a functional MRR1 gene. In contrast, a C-terminally truncated, activated form of Cap1 could upregulate MDR1 in a partially Mrr1-independent fashion. The induction of MDR1 expression by toxic chemicals occurred independently of Upc2 but required the presence of Mrr1 and also partially depended on Cap1. Transcriptional profiling and in vivo DNA binding studies showed that a constitutively active Mrr1 binds to and upregulates most of its direct target genes in the presence or absence of Cap1. Therefore, Mrr1 and Cap1 cooperate in the environmental induction of MDR1 expression in wild-type C. albicans, but gain-of-function mutations in either of the two transcription factors can independently mediate efflux pump overexpression and drug resistance.


Subject(s)
Candida albicans/metabolism , Transcription Factors/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Basic-Leucine Zipper Transcription Factors , Blotting, Southern , Blotting, Western , Candida albicans/drug effects , Candida albicans/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cerulenin/pharmacology , Chromatin Immunoprecipitation , Drug Resistance, Fungal , Flow Cytometry , Fluconazole/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Molecular Sequence Data , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...