Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lipids Health Dis ; 23(1): 54, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388929

ABSTRACT

BACKGROUND: Dyslipidemias, including familial hypercholesterolemia (FH), are a significant risk factor for cardiovascular diseases. FH is a genetic disorder resulting in elevated levels of low-density lipoprotein cholesterol (LDL-C) and an increased probability of early cardiovascular disorders. Heterozygous familial hypercholesterolemia (HeFH) is the most common form, affecting approximately 1 in 250 individuals worldwide, with a higher prevalence among the French-Canadian population. Childhood is a critical period for screening risk factors, but the recommendation for non-fasting screening remains controversial due to a lack of specific reference values for this state. This study aims to establish reference values for lipid levels in non-fasting children from Sherbrooke, Quebec, Canada, that will be specific for sex, age, and pubertal stages. METHODS: Blood samples and corresponding anthropometric data were collected from 356 healthy children aged from 6 to 13. They were categorized either into two age groups: Cohort 6-8 and Cohort 9-13, or into pubertal stages. Reference values, specifically the 2.5th, 5th, 10th, 50th, 90th, 95th, and 97.5th percentiles were determined using the CLSI C28-A3 guidelines. RESULTS: Lipid profiles did not significantly differ between sexes, except for higher levels of high-density lipoprotein (HDL-C) in boys within Cohort 6-8. HDL-C levels significantly increased, while LDL-C and non-HDL-C levels significantly decreased in both sexes with age. Non-fasting age- and pubertal stages-specific reference values were established. CONCLUSION: This study established reference intervals for lipid markers in non-fasting state within the pediatric French-Canadian population. These findings could be used in dyslipidemia screening in daily practice.


Subject(s)
Dyslipidemias , Hyperlipoproteinemia Type II , Male , Female , Humans , Child , Cholesterol, LDL , Reference Values , Canada/epidemiology , Hyperlipoproteinemia Type II/genetics , Puberty , Cholesterol, HDL
2.
Sci Rep ; 12(1): 15386, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36100610

ABSTRACT

High plasma matrix metalloproteases-9 (MMP-9) levels have been reported in Fragile X Syndrome in a limited number of animal and human studies. Since the results obtained are method-dependent and not directly comparable, the clinical utility of MMP-9 measurement in FXS remains unclear. This study aimed to compare quantitative gel zymography and ELISA and to determine which method better discriminates abnormal MMP-9 levels of individuals with FXS from healthy controls and correlates with the clinical profile. The active and total forms of MMP-9 were quantified respectively, by gel zymography and ELISA in a cohort of FXS (n = 23) and healthy controls (n = 20). The clinical profile was assessed for the FXS group using the Aberrant Behavior Checklist FXS adapted version (ABC-CFX), Adaptive Behavior Assessment System (ABAS), Social Communication Questionnaire (SCQ), and Anxiety Depression and Mood Scale questionnaires. Method comparison showed a disagreement between gel zymography and ELISA with a constant error of - 0.18 [95% CI: - 0.35 to - 0.02] and a proportional error of 2.31 [95% CI: 1.53 to 3.24]. Plasma level of MMP-9 active form was significantly higher in FXS (n = 12) as compared to their age-sex and BMI matched controls (n = 12) (p = 0.039) and correlated with ABC-CFX (rs = 0.60; p = 0.039) and ADAMS (rs = 0.57; p = 0.043) scores. As compared to the plasma total form, the plasma MMP-9 active form better enables the discrimination of individuals with FXS from controls and correlates with the clinical profile. Our results highlight the importance of choosing the appropriate method to quantify plasma MMP-9 in future FXS clinical studies.


Subject(s)
Fragile X Syndrome , Matrix Metalloproteinase 9/metabolism , Animals , Checklist , Communication , Humans , Surveys and Questionnaires
3.
Can J Diabetes ; 42(4): 382-388.e1, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29129455

ABSTRACT

OBJECTIVES: Enhanced mitochondrial fatty acid utilization is known to increase radical oxidative stress and induce insulin resistance. An increased level of plasma acylcarnitine (AC) has been proposed to indicate mitochondrial energy substrate overload, a possible mechanism leading to insulin resistance. The aim of our study was to determine fasting and postprandial plasma acetyl-carnitine (AC2:0), palmitoyl-carnitine (AC16:0), oleoyl-carnitine (AC18:1) and linoleoyl-carnitine (AC18:2) levels and their relationships with plasma nonesterified fatty acid appearance and oxidation rates and insulin sensitivity in participants with type 2 diabetes and normoglycemic offspring of 2 parents with type 2 diabetes (FH+) compared to healthy participants without family histories of type 2 diabetes (FH-). METHODS: All participants underwent 3 metabolic protocols: 1) a euglycemic hyperinsulinemic clamp at fasting; 2) a 6-hour steady-state oral standard liquid meal and 3) an identical 6-hour steady-state meal intake study with a euglycemic hyperinsulinemic clamp. AC levels were measured by liquid chromatography with tandem mass spectrometry, and fatty acid oxidation (FAO) rates were measured by stable isotopic tracer techniques with indirect respiratory calorimetry. RESULTS: During the insulin clamp at fasting, AC16:0 was significantly higher in the group with type 2 diabetes vs. FH- (p<0.05). In the postprandial state, AC2:0, AC16:0 and AC18:1 decreased significantly, but this reduction was blunted in type 2 diabetes, even during normalization of postprandial glucose levels during the insulin clamp. Fasting AC16:0 correlated with FAO (ρ=+0.604; p=0.0002); triacylglycerol (ρ=+0.427; p<0.02) and waist circumference (ρ=+0.416; p=0.02). CONCLUSIONS: Spillover of AC occurs in type 2 diabetes but is not fully established in FH+. AC16:0 can be a useful biomarker of excessive FAO.


Subject(s)
Biomarkers/blood , Diabetes Mellitus, Type 2/metabolism , Fatty Acids, Nonesterified/metabolism , Lipid Metabolism , Palmitoylcarnitine/blood , Adult , Carnitine/analogs & derivatives , Carnitine/pharmacology , Fasting/blood , Female , Humans , Insulin Resistance , Lipid Metabolism/drug effects , Male , Middle Aged , Oxidation-Reduction/drug effects , Postprandial Period , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...