Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Infect Dis ; 5(1): 131-140, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30427656

ABSTRACT

The clinical effectiveness of carbapenem antibiotics such as meropenem is becoming increasingly compromised by the spread of both metallo-ß-lactamase (MBL) and serine-ß-lactamase (SBL) enzymes on mobile genetic elements, stimulating research to find new ß-lactamase inhibitors to be used in conjunction with carbapenems and other ß-lactam antibiotics. Herein, we describe our initial exploration of a novel chemical series of metallo-ß-lactamase inhibitors, from concept to efficacy, in a survival model using an advanced tool compound (ANT431) in conjunction with meropenem.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/drug effects , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae Infections/drug therapy , beta-Lactamase Inhibitors/chemistry , Carbapenems/pharmacology , Crystallography, X-Ray , Inhibitory Concentration 50 , Meropenem/pharmacology , Microbial Sensitivity Tests , Picolinic Acids/chemistry , Picolinic Acids/pharmacology , Protein Binding , Structure-Activity Relationship , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases
2.
Article in English | MEDLINE | ID: mdl-29530861

ABSTRACT

Infections caused by carbapenem-resistant Enterobacteriaceae (CRE) are increasingly prevalent and have become a major worldwide threat to human health. Carbapenem resistance is driven primarily by the acquisition of ß-lactamase enzymes, which are able to degrade carbapenem antibiotics (hence termed carbapenemases) and result in high levels of resistance and treatment failure. Clinically relevant carbapenemases include both serine ß-lactamases (SBLs; e.g., KPC-2 and OXA-48) and metallo-ß-lactamases (MBLs), such as NDM-1. MBL-producing strains are endemic within the community in many Asian countries, have successfully spread worldwide, and account for many significant CRE outbreaks. Recently approved combinations of ß-lactam antibiotics with ß-lactamase inhibitors are active only against SBL-producing pathogens. Therefore, new drugs that specifically target MBLs and which restore carbapenem efficacy against MBL-producing CRE pathogens are urgently needed. Here we report the discovery of a novel MBL inhibitor, ANT431, that can potentiate the activity of meropenem (MEM) against a broad range of MBL-producing CRE and restore its efficacy against an Escherichia coli NDM-1-producing strain in a murine thigh infection model. This is a strong starting point for a chemistry lead optimization program that could deliver a first-in-class MBL inhibitor-carbapenem combination. This would complement the existing weaponry against CRE and address an important and growing unmet medical need.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/drug effects , Meropenem/pharmacology , Microbial Sensitivity Tests , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...