Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(7): 107102, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37485366

ABSTRACT

Ecological engineering of soil formation in tailings is an emerging technology toward sustainable rehabilitation of iron (Fe) ore tailings landscapes worldwide, which requires the formation of well-organized and stable soil aggregates in finely textured tailings. Here, we demonstrate an approach using microbial and rhizosphere processes to progressively drive aggregate formation and development in Fe ore tailings. The aggregates were initially formed through the agglomeration of mineral particles by organic cements derived from microbial decomposition of exogenous organic matter. The aggregate stability was consolidated by colloidal nanosized Fe(III)-Si minerals formed during Fe-bearing primary mineral weathering driven by rhizosphere biogeochemical processes of pioneer plants. From these findings, we proposed a conceptual model for progressive aggregate structure development in the tailings with Fe(III)-Si rich cements as core nuclei. This renewable resource dependent eco-engineering approach opens a sustainable pathway to achieve resilient tailings rehabilitation without resorting to excavating natural soil resources.

2.
Environ Sci Technol ; 53(23): 13720-13731, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31697487

ABSTRACT

The formation of water-stable aggregates in finely textured and polymineral magnetite Fe ore tailings is one of the critical processes in eco-engineering tailings into soil-like substrates as a new way to rehabilitate the tailings. Organic matter (OM) amendment and plant colonization are considered to be effective in enhancing water-stable aggregation, but the underlying mechanisms have not yet been elucidated. The present study aimed to characterize detailed changes in physicochemistry, Fe-bearing mineralogy, and organo-mineral interactions in magnetite Fe ore tailings subject to the combined treatments of OM amendment and plant colonization, by employing various microspectroscopic methods, including synchrotron-based X-ray absorption fine structure spectroscopy and nanoscale secondary ion mass spectroscopy. The results indicated that OM amendment and plant colonization neutralized the tailings' alkaline pH and facilitated water-stable aggregate formation. The resultant aggregates were consequences of ligand-promoted bioweathering of primary Fe-bearing minerals (mainly biotite-like minerals) and the formation of secondary Fe-rich mineral gels. Especially, the sequestration of OM (rich in carboxyl, aromatic, and/or carbonyl C) by Fe-rich minerals via ligand-exchange and/or hydrophobic interactions contributed to the aggregation. These findings have uncovered the processes and mechanisms of water-stable aggregate formation driven by OM amendment and plant colonization in alkaline Fe ore tailings, thus providing important basis for eco-engineered pedogenesis in the tailings.


Subject(s)
Carbon Sequestration , Ferrosoferric Oxide , Minerals , Soil , Water
3.
New Phytol ; 186(4): 947-956, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20353419

ABSTRACT

*Rhizanthella gardneri is a rare and fully subterranean orchid that is presumably obligately mycoheterotrophic. R. gardneri is thought to be linked via a common mycorrhizal fungus to co-occurring autotrophic shrubs, but there is no experimental evidence to support this supposition. *We used compartmentalized microcosms to investigate the R. gardneri tripartite relationship. (13)CO(2) was applied to foliage of Melaleuca scalena plants and [(13)C-(15)N]glycine was fed to the common mycorrhizal fungus, and both sources traced to R. gardneri plants. *In our microcosm trial, up to 5% of carbon (C) fed as (13)CO(2) to the autotrophic shrub was transferred to R. gardneri. R. gardneri also readily acquired soil C and nitrogen (N), where up to 6.2% of C and 22.5% of N fed as labelled glycine to soil was transferred via the fungus to R. gardneri after 240 h. *Our study confirms that R. gardneri is mycoheterotrophic and acquires nutrients via mycorrhizal fungus connections from an ectomycorrhizal autotrophic shrub and directly from the soil via the same fungus. This connection with a specific fungus is key to explaining why R. gardneri occurs exclusively under certain Melaleuca species at a very limited number of sites in Western Australia.


Subject(s)
Carbon/metabolism , Ecosystem , Nitrogen/metabolism , Orchidaceae/metabolism , Carbon Dioxide/metabolism , Carbon Isotopes , Germination , Glycine/metabolism , Isotope Labeling , Melaleuca/metabolism , Melaleuca/microbiology , Mycorrhizae/physiology , Nitrogen Isotopes , Orchidaceae/microbiology
4.
Mycol Res ; 109(Pt 4): 452-60, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15912933

ABSTRACT

We used ITS-RFLP and sequence analysis to determine the identities of the fungal endophytes of six terrestrial orchid species from southeastern Queensland, a region previously unexplored in this context. Pure cultures of orchid--colonising fungi were obtained and fungal identities were assessed by means of ITS-PCR, RFLP analysis, sequence comparison, and protocorm colonisation tests. ITS-PCR and RFLP analysis resulted in five main groupings. Sequencing and GenBank comparison of these five groups showed that the fungal endophytes isolated from the three Pterostylis species were probably Thanatephorus species. There was close sequence identity (90%) of the fungus isolated from Acianthus spp. to Epulorhiza repens, suggesting these may be the same fungal species. However, that only E. repens succeeded in colonising protocorms of Thelymitra pauciflora suggests these may be different species of Epulorhiza. Analysis of the ITS and LSU sequences of the fungus isolated from Caladenia carnea showed high identities with a sequence from a Sebacina vermifera originally isolated from Caladenia dilatata. These results show that there is specificity for fungal partners within the orchid genera Acianthus, Caladenia and Pterostylis.


Subject(s)
DNA, Ribosomal Spacer/analysis , Fungi/classification , Orchidaceae/microbiology , Phylogeny , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Fungi/genetics , Fungi/isolation & purification , Mycological Typing Techniques , Polymorphism, Restriction Fragment Length , Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...