Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Neuroimage ; 191: 560-567, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30831313

ABSTRACT

Awake rat brain positron emission tomography (PET) has previously been developed to avoid the influence of anesthesia on the rat brain response. In the present work, we further the awake rat brain scanning methodology to establish simultaneous scanning of two interacting rats in a high resolution, large field of view PET scanner. Awake rat imaging methodology based on point source tracking was adapted to be used in a dedicated human brain scanner, the ECAT high resolution research tomograph (HRRT). Rats could freely run on a horizontal platform of 19.4 × 23 cm placed inside the HRRT. The developed methodology was validated using a motion resolution phantom experiment, 3 awake single rat [18F]FDG scans as well as an [18F]FDG scan of 2 interacting rats. The precision of the point source based motion tracking was 0.359 mm (standard deviation). Minor loss of spatial resolution was observed in the motion corrected reconstructions (MC) of the resolution phantom compared to the motion-free reconstructions (MF). The full-width-at-half-maximum of the phantom rods were increased by on average 0.37 mm in the MC compared to the MF. During the awake scans, extensive motion was observed with rats moving throughout the platform area. The average rat head motion speed was 1.69 cm/s. Brain regions such as hippocampus, cortex and cerebellum could be recovered in the motion corrected reconstructions. Relative regional brain uptake of MC and MF was strongly correlated (Pearson's r ranging from 0.82 to 0.95, p < 0.0001). Awake rat brain PET imaging of interacting rats was successfully implemented on the HRRT scanner. The present method allows a large range of motion throughout a large field of view as well as to image two rats simultaneously opening the way to novel rat brain PET study designs.


Subject(s)
Brain/physiology , Neuroimaging/instrumentation , Neuroimaging/methods , Positron-Emission Tomography/instrumentation , Positron-Emission Tomography/methods , Animals , Motion , Rats , Wakefulness
2.
Alzheimers Res Ther ; 10(1): 74, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30064520

ABSTRACT

BACKGROUND: Imaging agents capable of quantifying the brain's tau aggregates will allow a more precise staging of Alzheimer's disease (AD). The aim of the present study was to examine the in vitro properties as well as the in vivo kinetics, using gold standard methods, of the novel positron emission tomography (PET) tau imaging agent [18F]MK-6240. METHODS: In vitro properties of [18F]MK-6240 were estimated with autoradiography in postmortem brain tissues of 14 subjects (seven AD patients and seven age-matched controls). In vivo quantification of [18F]MK-6240 binding was performed in 16 subjects (four AD patients, three mild cognitive impairment patients, six healthy elderly individuals, and three healthy young individuals) who underwent 180-min dynamic scans; six subjects had arterial sampling for metabolite correction. Simplified approaches for [18F]MK-6240 quantification were validated using full kinetic modeling with metabolite-corrected arterial input function. All participants also underwent amyloid-PET and structural magnetic resonance imaging. RESULTS: In vitro [18F]MK-6240 uptake was higher in AD patients than in age-matched controls in brain regions expected to contain tangles such as the hippocampus, whereas no difference was found in the cerebellar gray matter. In vivo, [18F]MK-6240 displayed favorable kinetics with rapid brain delivery and washout. The cerebellar gray matter had low binding across individuals, showing potential for use as a reference region. A reversible two-tissue compartment model well described the time-activity curves across individuals and brain regions. Distribution volume ratios using the plasma input and standardized uptake value ratios (SUVRs) calculated after the binding approached equilibrium (90 min) were correlated and higher in mild cognitive impairment or AD dementia patients than in controls. Reliability analysis revealed robust SUVRs calculated from 90 to 110 min, while earlier time points provided inaccurate estimates. CONCLUSIONS: This evaluation shows an [18F]MK-6240 distribution in concordance with postmortem studies and that simplified quantitative approaches such as the SUVR offer valid estimates of neurofibrillary tangle load 90 min post injection. [18F]MK-6240 is a promising tau tracer with the potential to be applied in the disease diagnosis and assessment of therapeutic interventions.


Subject(s)
Alzheimer Disease/pathology , Brain/drug effects , Brain/diagnostic imaging , Isoquinolines/pharmacokinetics , Neurofibrillary Tangles/pathology , Adult , Age Factors , Aged , Alzheimer Disease/diagnostic imaging , Autopsy , Autoradiography , Brain/pathology , Female , Fluorodeoxyglucose F18/pharmacokinetics , Humans , Imaging, Three-Dimensional , In Vitro Techniques , Magnetic Resonance Imaging , Male , Middle Aged , Neurofibrillary Tangles/metabolism , Positron-Emission Tomography , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL