Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biochim Biophys Acta Biomembr ; 1863(9): 183642, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34000261

ABSTRACT

This work investigates the potential probiotic effect of marennine - a natural pigment produced by the diatom Haslea ostrearia - on Vibrio splendidus. These marine bacteria are often considered a threat for aquaculture; therefore, chemical antibiotics can be required to reduce bacterial outbreaks. In vivo2H solid-state NMR was used to probe the effects of marennine on the bacterial membrane in the exponential and stationary phases. Comparisons were made with polymyxin B (PxB) - an antibiotic used in aquaculture and known to interact with Gram(-) bacteria membranes. We also investigated the effect of marennine using 31P solid-state NMR on model membranes. Our results show that marennine has little effect on phospholipid headgroups dynamics, but reduces the acyl chain fluidity. Our data suggest that the two antimicrobial agents perturb V. splendidus membranes through different mechanisms. While PxB would alter the bacterial outer and inner membranes, marennine would act through a membrane stiffening mechanism, without affecting the bilayer integrity. Our study proposes this microalgal pigment, which is harmless for humans, as a potential treatment against vibriosis.


Subject(s)
Microalgae/chemistry , Phenols/chemistry , Vibrio/chemistry , Deuterium , Magnetic Resonance Spectroscopy , Phosphorus
2.
Biochim Biophys Acta Biomembr ; 1861(4): 871-878, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30721653

ABSTRACT

Vibrio splendidus is a marine bacterium often considered as a threat in aquaculture hatcheries where it is responsible for mass mortality events, notably of bivalves' larvae. This bacterium is highly adapted to dynamic salty ecosystems where it has become an opportunistic and resistant species. To characterize their membranes as a first and necessary step toward studying bacterial interactions with diverse molecules, we established a labelling protocol for in vivo2H solid-state nuclear magnetic resonance (SS-NMR) analysis of V. splendidus. 2H SS-NMR is a useful tool to study the organization and dynamics of phospholipids at the molecular level, and its application to intact bacteria is further advantageous as it allows probing acyl chains in their natural environment and study membrane interactions. In this study, we showed that V. splendidus can be labelled using deuterated palmitic acid, and demonstrated the importance of surfactant choice in the labelling protocol. Moreover, we assessed the impact of lipid deuteration on the general fitness of the bacteria, as well as the saturated-to-unsaturated fatty acid chains ratio and its impact on the membrane properties. We further characterize the evolution of V. splendidus membrane fluidity during different growth stages and relate it to fatty acid chain composition. Our results show larger membrane fluidity during the stationary growth phase compared to the exponential growth phase under labelling conditions - an information to take into account for future in vivo SS-NMR studies. Our lipid deuteration protocol optimized for V. splendidus is likely applicable other microorganisms for in vivo NMR studies.


Subject(s)
Aquatic Organisms/chemistry , Cell Membrane/chemistry , Deuterium/chemistry , Isotope Labeling , Magnetic Resonance Spectroscopy , Membrane Lipids/chemistry , Vibrio/chemistry , Aquatic Organisms/metabolism , Cell Membrane/metabolism , Membrane Fluidity , Membrane Lipids/metabolism , Vibrio/metabolism
3.
J Exp Biol ; 220(Pt 6): 984-994, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28153979

ABSTRACT

Several bivalve species produce byssus threads to provide attachment to substrates, with mechanical properties highly variable among species. Here, we examined the distal section of byssal threads produced by a range of bivalve species (Mytilus edulis, Mytilus trossulus, Mytilus galloprovincialis, Mytilus californianus, Pinna nobilis, Perna perna, Xenostrobus securis, Brachidontes solisianus and Isognomon bicolor) collected from different nearshore environments. Morphological and mechanical properties were measured, and biochemical analyses were performed. Multivariate redundancy analyses on mechanical properties revealed that byssal threads of M. californianus, M. galloprovincialis and P. nobilis have very distinct mechanical behaviours compared with the remaining species. Extensibility, strength and force were the main variables separating these species groups, which were highest for M. californianus and lowest for P. nobilis Furthermore, the analysis of the amino acid composition revealed that I. bicolor and P. nobilis threads are significantly different from the other species, suggesting a different underlying structural strategy. Determination of metal contents showed that the individual concentration of inorganic elements varies, but that the dominant elements are conserved between species. Altogether, this bivalve species comparison suggests some molecular bases for the biomechanical characteristics of byssal fibres that may reflect phylogenetic limitations.


Subject(s)
Amino Acids/analysis , Bivalvia/chemistry , Bivalvia/ultrastructure , Metals/analysis , Animals , Biomechanical Phenomena , Bivalvia/anatomy & histology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL