Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Control Release ; 310: 115-126, 2019 09 28.
Article in English | MEDLINE | ID: mdl-31401199

ABSTRACT

Labrasol® ALF (Labrasol®), is a non-ionic surfactant excipient primarily used as a solubilising agent. It was investigated here as an intestinal permeation enhancer in isolated rat colonic mucosae in Ussing chamber and in rat in situ intestinal instillations. Labrasol® comprises mono-, di- and triglycerides and mono- and di- fatty acid esters of polyethylene glycol (PEG)-8 and free PEG-8, with caprylic (C8)- and capric acid (C10) as the main fatty acids. Source components of Labrasol® as well as Labrasol® modified with either C8 or C10 as the sole fatty acid components were also tested to determine which element of Labrasol® was responsible for its permeability-enhancing properties. Labrasol® (4, 8 mg/mL) enhanced the transport of the paracellular markers, [14C] mannitol, FITC-dextran 4000, and FITC-insulin across colonic mucosae. The enhancement was non-damaging, transient, and molecular weight-dependent. The PEG ester fraction of Labrasol® also had enhancing properties. When insulin was administered with Labrasol® in instillations, it had a relative bioavailability of 7% in jejunum and 12% in colon. C8- and C10 versions of Labrasol® and the PEG ester fraction also induced similar bioavailability values in jejunal instillations: 6, 5 and 7% respectively. Inhibition of lipases in instillations did not reduce the efficacy of Labrasol®, suggesting that its mechanism as a PE is not simply due to liberated medium chain fatty acids. Labrasol® acts as an efficacious intestinal permeation enhancer and has potential for use in oral formulations of macromolecules and BCS Class III molecules.


Subject(s)
Colon/drug effects , Excipients/pharmacology , Glycerides/pharmacology , Intestinal Absorption/drug effects , Intestinal Mucosa/drug effects , Jejunum/drug effects , Animals , Colon/metabolism , Excipients/pharmacokinetics , Glycerides/pharmacokinetics , In Vitro Techniques , Intestinal Mucosa/metabolism , Jejunum/metabolism , Male , Rats , Rats, Wistar , Tight Junctions/drug effects , Tight Junctions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL