Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Poult Sci ; 101(9): 102000, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35901644

ABSTRACT

Efficacious euthanasia by applying manual cervical dislocation can be difficult on large and mature poultry. The challenge with using manual cervical dislocation is that the strength required to hold heavy poultry and swiftly apply cervical dislocation can be physically impossible for most people. Therefore, alternative methods of euthanasia are needed for mature and large poultry. Mechanical cervical dislocation using the Koechner Euthanizing Device (KED), captive bolt using the Turkey Euthanasia Device (TED), carbon dioxide (CO2), and electrical euthanasia were evaluated for use on 65-wk-old broiler breeders at flock termination. Following application of each method, physiological reflexes including the eye nictitating membrane reflex, mouth gaping, and body movement, broken skin, blood loss, kill success, time to cessation of heartbeat, and blood plasma corticosterone levels were assessed. Birds euthanized using the KED had longer response durations for eye nictitating membrane (91 s) and reflexive mouth gaping (161 s) compared to TED, CO2, and electrical euthanasia (0-7 s). Body movement durations were also longer for KED (214 s) and TED (209 s) than for CO2 and electrical euthanasia (0-8 s). The highest percentages of broken skin (93%) and blood loss (96%) were observed for TED, followed by KED (71%, 68%), then CO2 (0%, 6%) and electrical euthanasia (0%, 3%). No significant differences (P = 0.1781) were observed for kill success rates with 98% for KED, 100% for TED, 97% for CO2, and 100% for electrical euthanasia at 4-min. Time to heartbeat cessation did not differ between KED (659 s), TED (427 s), or CO2 (583 s) euthanasia methods. No heartbeat was detected following electrical euthanasia. Blood plasma corticosterone levels did not differ between preeuthanasia or posteuthanasia from any of the methods applied. Based on these results each euthanasia method is acceptable for use with broiler breeders.


Subject(s)
Carbon Dioxide , Euthanasia, Animal , Animals , Chickens/physiology , Corticosterone , Euthanasia, Animal/methods , Farms , Humans , Poultry
2.
J Food Prot ; 84(3): 449-455, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33125047

ABSTRACT

ABSTRACT: Poultry processing establishments use antimicrobial aids on broiler parts to minimize Campylobacter contamination. A silver-stabilized hydrogen peroxide (SHP) product was assessed for use as an antimicrobial processing aid. In a series of experiments, wing segments with skin were inoculated with 103 to 107 cells of Campylobacter coli, followed by treatment with SHP at 15,000 or 30,000 mg/L, peroxyacetic acid (PAA) at 300 or 3,000 mg/L (parts per million), or water. Each treatment was applied by either dip or spray. Rinsates from each wing segment were analyzed for direct counts and prevalence of Campylobacter. Treatment with SHP or PAA significantly reduced Campylobacter levels compared with water controls by up to 2.22 log CFU/mL. At high inoculum levels (106 to 107), SHP and PAA applied by dip had up to 1.27 log CFU/mL further reductions of Campylobacter levels compared with spray-treated wing segments. Additionally, wing drumettes were observed to retain higher levels and prevalence of Campylobacter recovery compared with wing flats at a low inoculation level (103). The results indicated that there was no carryover effect of SHP (same day versus 24 h) and dip treatment with SHP or PAA decreased Campylobacter recovery on broiler chicken wing segments compared with a water control. Although a 2-log reduction was modest, SHP had similar efficacy as the commonly used processing aid PAA. SHP shows potential for further investigation as an antimicrobial processing aid for use on poultry parts.


Subject(s)
Campylobacter , Animals , Chickens , Colony Count, Microbial , Food Handling , Food Microbiology , Hydrogen Peroxide/pharmacology , Meat , Peracetic Acid/pharmacology , Prevalence
3.
Poult Sci ; 98(1): 393-397, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30125007

ABSTRACT

In 2016, USDA-Food Safety and Inspection Service began using a neutralizing buffered peptone water (nBPW) to rinse broiler carcasses for Salmonella and Campylobacter performance standard testing. The nBPW contains standard buffered peptone water (BPW) with compounds to neutralize residual antimicrobials that may be transferred from the carcass to the sample rinsate. However, a direct comparison of nBPW and BPW on carcasses commercially treated with antimicrobials has not been conducted. On 3 replicate days in a commercial broiler processing plant, an immersion chilling biomap using whole carcass rinse samples taken prior to any chilling treatment (30), after pre-chill treatment (30), after primary chill (30), after secondary chill (30), after post-chill treatment (50), and after post-chill treatment without the pre-chill treatment (49) were tested. Carcasses were rinsed with either BPW (without neutralizer) or nBPW. Rinsates were sampled for Salmonella and Campylobacter prevalence and both Enterobacteriaceae (EB) prevalence and counts. No significant differences were observed between sampling sites or rinse media for Salmonella due to an overall low prevalence (4 positive/219 samples). Campylobacter prevalence significantly decreased from prior to chilling (93%) to after all chilling steps (47%) as anticipated (P < 0.0001); however, overall significantly fewer Campylobacter positive carcasses were detected when nBPW was used (55%) in comparison to BPW (70%, P = 0.0258). Both EB prevalence and counts significantly decreased (both P < 0.0001) from prior to chilling (100%, 2.35 log10 CFU/mL) through after all chilling steps (52%, 0.47 log10 CFU/mL). The use of nBPW versus BPW did not impact EB prevalence; however, samples rinsed with nBPW had significantly higher overall counts (1.26 vs. 1.00 log10 CFU/mL, P = 0.0134). The results from this study indicate that the use of a PAA pre-chill treatment did not significantly impact bacteria recovery following all chilling steps. The use of nBPW was effective in neutralizing residual PAA in carcass rinsates when sampling for EB counts; however, nBPW may lessen the ability to detect Campylobacter in these same samples.


Subject(s)
Campylobacter/isolation & purification , Enterobacteriaceae/isolation & purification , Food Handling/methods , Food Microbiology/methods , Salmonella/isolation & purification , Animals , Anti-Infective Agents/chemistry , Buffers , Chickens , Meat/microbiology , Peptones/chemistry , Peracetic Acid/chemistry , Water
4.
Poult Sci ; 97(8): 2775-2784, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29889277

ABSTRACT

The impact of restrictive feeding programs on Salmonella and Campylobacter colonization and persistence after challenge was investigated for broiler breeder pullets housed in an experimental rearing facility. Pullet-chicks were placed on litter in 3 feeding program rooms and each room contained 2 replicate pens. The feeding programs were: (1) Skip-a-day in trough feeders (SAD); (2) Every-day in trough feeders (EDT); (3) Every-day on the pen litter (EDL). On d 1, an additional group of hatchmate chicks were housed in a separate room and gavaged with Salmonella Typhimurium, to later serve as seeder chicks. After seeders were confirmed Salmonella-positive at wk 4, at wk 5 seeders were placed into each feeding program pen to commingle with 135 penmates. At 7, 9, 11, 17, 18, and 20 wk the litter surface in each pen was sampled using intermittently stepped-on drag-swabs. At 8, 12, 16, and 20 wk of age the ceca were sampled from 10 penmates/pen and 2 pooled spleen samples/pen were collected. SAD litter remained Salmonella-positive through 20 wk of age while EDL and EDT pens had no detectible litter Salmonella recovery by 18 and 20 wk. EDL fed pens had no direct (<102 cfu/mL) litter Salmonella recovery during the entirety of the experiment. Salmonella prevalence for ceca from SAD pullets was significantly (P < 0.05) higher at 8 wk (70%) compared to EDT (40%) and EDL (30%). At wk 12, SAD pullets for both on and off-feed sampling days had significantly higher Salmonella recovery (40%), compared to EDT and EDL (both at 5% recovery). By 16 and 20 wk, only the SAD pullets on the on-feed day (48 h without feed) had recovery of Salmonella at 20%. Salmonella recovery in pooled spleen samples did not appear associated with feeding treatments (22% positive). The remaining pullets challenged with Campylobacter at 21 wk produced similar trends as was seen for Salmonella. SAD program pullets had significantly higher Campylobacter from ceca (80 to 100%) compared to pullets on EDL (30 to 60%) or EDT (40 to 95%). These results suggest that using a Skip-a-Day feeding program for broiler breeder pullets contributes to persistently higher Salmonella and Campylobacter ceca colonization and litter prevalence.


Subject(s)
Animal Husbandry/methods , Campylobacter coli/physiology , Chickens , Diet/veterinary , Gastrointestinal Microbiome/physiology , Poultry Diseases/epidemiology , Salmonella typhimurium/physiology , Animal Feed/analysis , Animals , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Female , Gastrointestinal Tract/microbiology , Poultry Diseases/microbiology , Salmonella Infections, Animal/epidemiology , Salmonella Infections, Animal/microbiology
5.
Poult Sci ; 97(1): 64-73, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29136237

ABSTRACT

Three separate broiler Salmonella Typhimurium challenge experiments were conducted evaluating efficacy of formic and propionic acid feed supplements to suppress environmental and cecal Salmonella Typhimurium prevalence. In experiment 1, broilers were provided feed with 1 kg/ton formic acid or 5 kg/ton propionic acid feed additives or a basal control diet. At the day of placement, half of the pens were inoculated with seeder chicks orally challenged with a marker strain of Salmonella Typhimurium and to yield challenged and adjacent nonchallenged pens. No differences in weekly litter samples or cecal Salmonella prevalence at 3 or 6 wk among feeding treatments were detected. In experiment 2, treatments were: 2 kg/ton propionic acid in feed, 1.0 mL/L formic acid in water, both propionic acid in feed and formic acid in water, and a basal control. Every pen was challenged with seeder chicks inoculated with Salmonella Typhimurium. By 6 wk all pens maintained detectable litter Salmonella, and broilers provided both propionic acid in feed and formic acid in water had the lowest cecal recovery (35%), compared to the control (60%). In experiment 3, treatments were: formic acid at 4 or 6 kg/ton from wk 0 to 6 or for only the last wk, propionic acid at 5 or 10 kg/ton for only the last wk, and a basal control. Each pen was challenged with Salmonella Typhimurium inoculated seeder chicks. By 6 wk, broilers fed formic acid (4 kg/ton) for the entire growout had no Salmonella-positive ceca (0/30). All treatments that provided acid supplemented feed for only the last wk had 3-13% Salmonella-positive ceca. These experiments indicate that adding formic acid to broiler feed appears to prevent Salmonella colonization from challenge pens entering into the adjacent nonchallenge pens. Feeding formic acid (4 kg/ton) for 6 wk resulted in no recovery of Salmonella from ceca compared to the control prevalence of 17%.


Subject(s)
Chickens , Dietary Supplements/analysis , Formates/metabolism , Poultry Diseases/prevention & control , Propionates/metabolism , Salmonella Infections, Animal/prevention & control , Salmonella typhimurium/drug effects , Animal Feed/analysis , Animals , Cecum/microbiology , Diet/veterinary , Dose-Response Relationship, Drug , Drinking Water/analysis , Formates/administration & dosage , Male , Poultry Diseases/microbiology , Propionates/administration & dosage , Salmonella Infections, Animal/microbiology , Time Factors
6.
Poult Sci ; 96(12): 4361-4369, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29053866

ABSTRACT

Research was conducted to evaluate the impact of litter Salmonella status during feed withdrawal on Salmonella recovery from the crop and ceca following feed withdrawal. In 4 experiments, pens of broilers in separate rooms were challenged with marker strains of either Salmonella Montevideo or Salmonella Heidelberg. Three d post challenge, a 12-hour feed withdrawal was initiated, and one pen of broilers was switched between rooms for each Salmonella serotype. In experiments 3 and 4, non-challenged broilers also were added to the Salmonella challenge pens. The litter of each pen was sampled before and after the feed withdrawal period, the broilers euthanized, and the crop and ceca aseptically removed for Salmonella isolation. Results showed that only the challenge Salmonella serotype was recovered from the litter in challenge pens where broilers were not moved, while both Salmonella serotypes were recovered from the litter of the switched pens. Salmonella was recovered from 56/80 crops and from 66/80 ceca of challenged broilers that remained in the challenge pens. The challenge Salmonella serotype was recovered from 50/80 crops and from 60/80 ceca, and the switched pens' litter Salmonella serotype was recovered from 19/80 crops but not from the ceca in broilers challenged with Salmonella and then switched between pens. For experiments 3 and 4, Salmonella was recovered from 19/40 crops and from only 2/40 ceca from the non-challenged broilers placed into the Salmonella challenge pens. The results from broilers that were switched between Salmonella challenge pens indicate that the recovery of Salmonella from the crop of broilers following feed withdrawal (on Salmonella-contaminated litter) appears to depend mainly on the initial challenge Salmonella (62%) and less on the litter Salmonella (24%) status during the feed withdrawal period. In contrast, only the initial challenge Salmonella was recovered from the ceca (79%) from broilers that remained in challenge pens or were switched between Salmonella challenge pens. However, when non-challenged broilers were placed into the Salmonella challenge pens and commingled during the 12-hour feed and water withdrawal period, it was possible to recover the pen litter Salmonella from the ceca at a low level of 5% (2/40).


Subject(s)
Chickens , Food Deprivation , Poultry Diseases/microbiology , Salmonella Infections, Animal/microbiology , Salmonella enterica/physiology , Animal Feed/analysis , Animals , Cecum/microbiology , Crop, Avian/microbiology , Environmental Microbiology , Floors and Floorcoverings , Male , Salmonella enterica/classification , Serogroup
7.
Poult Sci ; 96(9): 3495-3501, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28854742

ABSTRACT

Broilers in the United States are typically electrically stunned using low voltage-high frequency (12-38 V, ≥400 Hz) DC or AC water bath stunners. In the European Union, however, broilers are required to be electrocuted using high voltage-low frequency (50-150 V, 50-350 Hz) AC. Low voltage stunned broilers regain consciousness in the absence of bleeding. In contrast, high voltage stunned broilers die due to induction of cardiac fibrillation. For birds stunned with low voltage systems, concerns have been raised regarding animal welfare during bleeding. This work evaluated the impact of extended DC stunning duration and alternative stunning methods (DC+AC combination) on the recovery of bird consciousness and meat quality. In the absence of bleeding, broilers that were DC stunned for extended times (60, 90, or 120 s), 63, 10, or 0% of broilers, respectively, were able to recover consciousness. Alternative stunning protocols included water bath stunning broilers at 15 or 25 V DC for 10 s followed by plate stunning at 100, 110, or 120 V AC for 5 s. Prior to shackling, live body weight and shank width were measured and during stunning, maximum mA for both DC and AC stuns were recorded. All of the alternative stunning protocols (DC+AC) resulted in non-recoverable stunning. The maximum mA recorded during both DC and AC stunning were moderately/strongly (r = 0.54-0.81) correlated to body weight and poorly/moderately (r = 0.27-0.74) correlated to shank width. No significant differences for carcass or meat quality characteristics (hemorrhages, red wing tips, broken clavicles, pH, cook loss, a* and b* color values, and MORS shear energy) were detected between control (15 or 25 V DC only) and treatment groups (DC+AC combination stunning). The only significant different meat quality parameter was L* values where the lowest voltage group (15 V DC) had the darkest fillets (53.27) and the 15 V DC+100 V AC group had the lightest fillets (55.61) with all other groups intermediate. These data indicate that stunning parameters combining DC and AC stunning may be viable protocols when a stun-to-death is desired.


Subject(s)
Abattoirs , Chickens/physiology , Electricity/adverse effects , Electroshock/veterinary , Food Handling/methods , Meat/analysis , Unconsciousness/veterinary , Animal Welfare , Animals , Body Weight , Electroshock/methods , Female , Male , Sex Factors , Time Factors , Water
8.
Poult Sci ; 96(1): 241-245, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27591281

ABSTRACT

To estimate the potential for residual antimicrobial solution carryover, surface water accumulation and loss was measured on post-chill carcasses that were either dipped or sprayed with water. For all experiments, broilers were slaughtered, soft or hard scalded, defeathered, and eviscerated. Carcasses were immersion chilled, allowed to drip, and post-chill carcass weight (CW) recorded. For water dip treatment, carcasses were dipped for 0.5 min in water and hung by a wing (n = 33) or a leg (n = 30) and CW recorded at 0, 0.5, 1, 2, and 5 min post-dip. For water spray treatment, individual carcasses were hung by either the wings (n = 35) or legs (n = 34) from a shackle suspended from a scale. Water was sprayed at 80 psi and post-spray CW recorded. Initial water accumulation (0 min) for dipped carcasses was not significantly different (P > 0.05) for carcasses hung by the leg (101.0 g) or wing (108.8 g). Following the 5 min drip time, 31 g of water remained on the carcasses hung by the leg and only 10 g on carcasses hung by the wing (P < 0.05). When carcasses were sprayed with water, initial water accumulation (0 min) was 62 g for carcasses hung by the legs and 60 g for carcasses hung by the wings (P > 0.05). Following the 5 min drip time, 1 g or no water remained on the sprayed carcasses (P > 0.05). Carcasses that were dipped and hung by a leg for 5 min retained significantly more water (31 g) than carcasses that were dipped and hung by a wing (10 g) or sprayed carcasses hung either way (0.3 g) (P < 0.05). Post-chill water dip resulted in significantly higher initial carcass water accumulation than spraying (105 g vs. 61 g, P < 0.05). Carcass orientation during dripping only affected the amount of retained water for dipped carcasses. Dipped carcasses hung by a leg have the highest potential for residual carcass antimicrobial solution carryover and sprayed carcasses hung by either orientation have the lowest potential for residual antimicrobial solution carryover.


Subject(s)
Anti-Infective Agents/analysis , Food Handling/methods , Meat/analysis , Water/analysis , Animals , Chickens , Cold Temperature
9.
Poult Sci ; 95(5): 1116-24, 2016 May.
Article in English | MEDLINE | ID: mdl-26976901

ABSTRACT

The housing of laying hens is important for social, industrial, and regulatory aspects. Many studies have compared hen housing systems on the research farm, but few have fully examined commercial housing systems and management strategies. The current study compared hens housed in commercial cage-free aviary, conventional cage, and enriched colony cage systems. Environmental and eggshell pool samples were collected from selected cages/segments of the housing systems throughout the production cycle and monitored for Salmonella and Campylobacter prevalence. At 77 wk of age, 120 hens per housing system were examined for Salmonella and Campylobacter colonization in the: adrenal glands, spleen, ceca, follicles, and upper reproductive tract. All isolates detected from environmental swabs, eggshell pools, and tissues were identified for serotype. Two predominant Salmonella were detected in all samples:S.Braenderup andS.Kentucky.Campylobacter coli and C. jejuni were the only Campylobacter detected in the flocks. Across all housing systems, approximately 7% of hens were colonized with Salmonella, whereas >90% were colonized with Campylobacter Salmonella Braenderup was the isolate most frequently detected in environmental swabs (P<0.0001) and housing system impacted Salmonella spp. shedding (P<0.0001).Campylobacter jejuni was the isolate most frequently found in environmental swabs (P<0.01), while housing system impacted the prevalence of C. coli and jejuniin ceca (P<0.0001). The results of this study provide a greater understanding of the impact of hen housing systems on hen health and product safety. Additionally, producers and academia can utilize the findings to make informed decisions on hen housing and management strategies to enhance hen health and food safety.


Subject(s)
Campylobacter Infections/veterinary , Campylobacter/isolation & purification , Chickens/microbiology , Housing, Animal , Salmonella Infections, Animal/microbiology , Salmonella/isolation & purification , Animals , Campylobacter Infections/microbiology , Egg Shell/microbiology , Environmental Microbiology , Female
10.
Poult Sci ; 95(3): 694-704, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26755657

ABSTRACT

Two experiments evaluated prebiotics added to feed on the recovery of Salmonella in broilers during grow-out and processing. In Experiment 1, "seeder" chicks were inoculated with Salmonella Typhimurium and placed with penmates. Treatments were: basal control diet, added 0.3% bamboo charcoal, 0.6% bamboo charcoal, or 0.12% Aromabiotic (medium chain fatty acids). The ceca from seeders and penmates were sampled to confirm Salmonella colonization at 3, 4, and 6 wk, and pen litter was sampled weekly. At 3 wk, charcoal fed chicks had significantly lower cecal recovery (37% lower) of Salmonella via direct plating but no differences at wk 4 or 6. At 6 wk, broilers fed Aromabiotic had no recovery of Salmonella from ceca with direct plating and significantly, 18%, lower recovery with enrichment. In Experiment 2, the treatments were: basal control diet, added 0.3% bamboo charcoal, 0.3% activated bamboo charcoal, or 0.3% pine charcoal. At placement, 2 seeders were challenged with Salmonella and commingled with penmates and ceca sampled at 1 and 2 wk, and ceca from 5 penmates/pen at 3 to 6 wk. Weekly, the pH of the crop and duodenum was measured from 1 penmate/pen and the litter surface sampled. At the end of grow-out broilers were processed. Results showed that penmates had colonized at 1 and 2 wk. Cecal Salmonella showed no differences except at 4 wk, when activated bamboo charcoal had a 18% lower recovery of Salmonella (enrichment) compared to the control (88%). Similar to Experiment 1, the recovery of Salmonella from the litter was not significantly different among treatments, however an overall decrease in recovery by 4 wk with direct plating reoccurred. The pH of the duodenum and the crop were not different among treatments. Crop pH (6.0) for all treatments were significantly higher at wk 1 compared to wk 2 to 6. Charcoals had minimal effect on Salmonella recovery in the ceca, but following defeathering, broilers fed charcoals had significantly lower Salmonella recovery from breast skin (charcoals 5+/60 compared to control 8+/20). While the addition of charcoals to broilers feed did not significantly affect Salmonella recovery during production (from litter or ceca samples) there was a lower Salmonella recovery from breast skin following scalding and defeathering.


Subject(s)
Charcoal/chemistry , Diet/veterinary , Fatty Acids/metabolism , Poultry Diseases/prevention & control , Prebiotics , Salmonella Infections, Animal/prevention & control , Salmonella typhimurium/drug effects , Animal Feed/analysis , Animals , Crop, Avian/chemistry , Duodenum/chemistry , Hydrogen-Ion Concentration , Male , Pinus/chemistry , Poaceae/chemistry , Poultry Diseases/microbiology , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/growth & development , Skin/microbiology
11.
J Food Prot ; 78(11): 1938-44, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26555515

ABSTRACT

The purpose of this study was to evaluate neck skin (NS), whole carcass rinse (WCR), and whole carcass enrichment (WCE) sampling procedures for Salmonella isolation and serogroup identification from the same broiler chicken carcass treated with air or immersion chilling. Commercially processed and eviscerated broiler carcasses were collected from a commercial processing plant, individually bagged, and transported to the pilot processing plant. In experiment 1, carcasses were air chilled to 4°C. In experiment 2, carcasses were immersion chilled with or without chlorine. After air chilling, Salmonella was detected on 78% of NS and 89% of WCE samples. Only one Salmonella serogroup was detected from each of 13 Salmonella-positive NS samples, and two serogroups were detected on 1 Salmonella-positive NS sample. Only one Salmonella serogroup was detected from each of 13 Salmonella-positive WCE samples, and two serogroups were detected from 3 Salmonella-positive WCE samples. After immersion chilling without chlorine, Salmonella was detected on 38% of NS, 45% of WCR, and 100% of WCE samples. Without chlorine, the 15 Salmonella-positive NS samples included 14 samples with one serogroup and 1 sample with two serogroups. Only one Salmonella serogroup was detected from WCR samples after immersion chilling. Of 40 Salmonella-positive WCE samples, 23 had a one, 14 had two, and 3 had three Salmonella serogroups. After immersion chilling with chlorine, Salmonella was detected on 35% of NS, 0% of WCR, and 90% of WCE samples. With chlorine, the 14 Salmonella-positive NS samples included 11 samples with one serogroup and 3 samples with two serogroups. No Salmonella serogroups were detected from WCR samples after immersion chilling with 20 mg/liter free chlorine. The 36 Salmonella-positive WCE samples included 21 samples with one serogroup and 15 samples with two serogroups. NS and WCE sampling methodologies yielded similar prevalence and serogroup diversity after air chilling. However, after immersion chilling with or without chlorine, WCE sampling yielded significantly higher (α ≤ 0.05) prevalence and serogroup diversity than either NS or WCR sampling methodologies.


Subject(s)
Food Contamination/prevention & control , Food Handling/methods , Meat/microbiology , Neck/microbiology , Salmonella/isolation & purification , Skin/microbiology , Animals , Chickens , Food Contamination/analysis , Prevalence , Salmonella/classification , Salmonella/genetics , Serogroup
12.
Poult Sci ; 93(11): 2893-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25172928

ABSTRACT

A study was conducted to determine the bacteriological effect of exposing processed broiler carcasses to a high (10-fold increase) concentration chlorinated drench. During each of 6 replicate trials, eviscerated prechill carcasses were obtained from a commercial processing plant and chlorine-treated carcasses were subjected to a 1-min drench in 500 mL of a 500 mg/kg chlorine solution (sodium hypochlorite). Water-drenched carcasses were treated the same way except water was used in place of chlorinated water drench. Control carcasses were not drenched. All carcasses were then subjected to a whole carcass rinse (WCR) in 450 mL of buffered peptone water, from which 50 mL of the rinsate was removed for enumeration of total aerobic bacteria (APC), Escherichia coli, and total coliforms (TC). The entire carcass was then incubated 24 h at 37°C (whole carcass enrichment, WCE) for recovery of Salmonella. Levels of bacteria recovered from WCR were lower by 0.6 log10 cfu/mL for APC, 0.8 for E. coli, and 0.9 for TC when carcasses were drenched with water compared with undrenched control levels. Similarly, the levels of bacteria recovered from WCR were further lower by 1.0 log10 cfu/mL for APC, 0.5 for E. coli, and 0.5 for TC, when carcasses were drenched with 500 mg/kg of chlorine compared with water. However, there was no significant difference (P > 0.05) in prevalence of Salmonella among the treatments (29% positive for control, 26% positive for water, 38% positive for chlorinated). These results indicate that drenching eviscerated carcasses with water or chlorinated water at 500 mg/kg significantly, but minimally, reduces the numbers of APC, E. coli, and TC bacteria recovered compared with undrenched carcasses. However, neither drenching carcasses with water or high chlorine had an effect on the prevalence of Salmonella that remain with the carcass as determined by WCE. The results of this study confirms the importance of maintaining and replenishing free chlorine for optimal antimicrobial activity, because chlorine at 500 mg/kg was rapidly used within 1 min of exposure to the carcass to <10 mg/kg.


Subject(s)
Bacteria/isolation & purification , Chickens , Disinfectants/pharmacology , Food Microbiology/methods , Sodium Hypochlorite/pharmacology , Animals , Bacteria, Aerobic/isolation & purification , Bacterial Load , Enterobacteriaceae/isolation & purification , Food Handling/methods , Salmonella/isolation & purification , Water/pharmacology
13.
Poult Sci ; 93(6): 1534-41, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24879703

ABSTRACT

The effect of scalding and chilling procedures was evaluated on carcass and breast meat weight and yield in broilers. On 4 separate weeks (trials), broilers were subjected to feed withdrawal, weighed, and then stunned and bled in 4 sequential batches (n = 16 broilers/batch, 64 broilers/trial). In addition, breast skin was collected before scalding, after scalding, and after defeathering for proximate analysis. Each batch of 16 carcasses was subjected to either hard (60.0°C for 1.5 min) or soft (52.8°C for 3 min) immersion scalding. Following defeathering and evisceration, 8 carcasses/batch were air-chilled (0.5°C, 120 min, 86% RH) and 8 carcasses/batch were immersion water-chilled (water and ice 0.5°C, 40 min). Carcasses were reweighed individually following evisceration and following chilling. Breast meat was removed from the carcass and weighed within 4 h postmortem. There were significant (P < 0.05) differences among the trials for all weights and yields; however, postfeed withdrawal shackle weight and postscald-defeathered eviscerated weights did not differ between the scalding and chilling treatments. During air-chilling all carcasses lost weight, resulting in postchill carcass yield of 73.0% for soft-scalded and 71.3% for hard-scalded carcasses, a difference of 1.7%. During water-chilling all carcasses gained weight, resulting in heavier postchill carcass weights (2,031 g) than for air-chilled carcasses (1,899 g). Postchill carcass yields were correspondingly higher for water-chilled carcasses, 78.2% for soft-scalded and 76.1% for hard-scalded carcasses, a difference of 2.1%. Only in trials 1 and 4 was breast meat yield significantly lower for hard-scalded, air-chilled carcasses (16.1 and 17.5%) than the other treatments. Proximate analysis of skin sampled after scalding or defeathering did not differ significantly in moisture (P = 0.2530) or lipid (P = 0.6412) content compared with skin sampled before scalding. Skin protein content was significantly higher (P < 0.05) for prescald and soft-scalded skin samples than for hard-scalded or soft or hard-scalded skin samples after defeathering. The hard-scalding method used in this experiment did not result in increased skin lipid loss either before or after defeathering.


Subject(s)
Chickens/physiology , Food Handling/methods , Meat/analysis , Pectoralis Muscles/physiology , Animals , Cold Temperature , Female , Hot Temperature , Male
14.
Poult Sci ; 93(8): 2117-22, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24931964

ABSTRACT

This study compared the recovery of Salmonella from hatching eggs using 3 sampling methods (eggshell rinsing, eggshell crush following a previous rinse, and eggshell crush without previous rinse). Eggshells were drop-inoculated with approximately 10(1), 10(2), or 10(3) cfu/eggshell of Salmonella Enteritidis and allowed to dry at room temperature for 1 or 24 h. For the shell rinse groups, each inoculated egg was rinsed with buffered peptone water. These rinsed eggs were used for the shell crush with previous rinse groups, and each egg was aseptically cracked, the contents discarded, and the eggshell and membranes crushed with buffered peptone water. This same crush procedure was used for the shell crush without previous shell rinse eggs. The recovery of Salmonella 1 h after inoculation for shell rinse sampled eggs was 16% positive at 10(1), 49% at 10(2), and 93% at 10(3) cfu/eggshell challenge. For the shell crush with previous shell rinse, sampled egg recovery was 0% positive at 10(1), 3% at 10(2), and 17% at 10(3) cfu/eggshell. For the shell crush, sampled eggs had recovery of 23% positive at 10(1), 69% at 10(2), and 96% at 10(3) cfu/eggshell challenge. The recovery of Salmonella 24 h after inoculation for the shell rinse eggs was 3% positive at 10(1), 12% at 10(2), and 22% at 10(3) cfu/eggshell challenge; recovery for shell crush with previous shell rinse sampling was 2% positive at 10(1), 8% at 10(2), and 5% at 10(3) cfu/eggshell challenge; and for the shell crush sampling recovery was 2% at 10(1), 32% at 10(2), and 42% at 10(3) cfu/eggshell challenge. Eggshell crush was a more sensitive (∼10 percentage points) sampling method than eggshell rinse at both 1 and 24 h, but both methods were equally optimal when the inoculum was at 10(3) and samples were collected after 1 h. Waiting 24 h after inoculation to sample significantly lowered the recovery for both the shell rinse and shell crush sampling methods by ∼40 percentage points.


Subject(s)
Eggs/microbiology , Food Microbiology/methods , Salmonella enteritidis/isolation & purification , Animals , Chickens , Colony Count, Microbial , Sensitivity and Specificity
15.
J Food Prot ; 77(3): 493-5, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24674443

ABSTRACT

Postchill neck skin maceration (NSM) and whole-carcass rinsing (WCR) are frequently used methods to detect salmonellae from processed broilers. These are practical, nondestructive methods, but they are insensitive and may result in false negatives (20 to 40%). Neck skin samples comprise only 4% of the skin from the broiler carcass by weight, while WCR will not detect firmly attached Salmonella organisms and only 7.5% of the rinsate is utilized. Whole-carcass enrichment (WCE) involves incubation of the whole carcass overnight in a preenrichment broth and can recover as few as 8 inoculated Salmonella cells per carcass. The objective of this study was to use NSM, WCR, and WCE sampling to detect naturally occurring Salmonella from the same commercially processed broiler either prechill or postchill. Ten carcasses were obtained prechill and another 10 postchill on each of two replicate days from each of two commercial processing plants. From each carcass, 8.3 g of neck skin was sampled, and then the carcass was rinsed with 400 ml of 1% buffered peptone water. Thirty milliliters was removed and incubated (WCR), and the remaining 370 ml of broth and the carcass were incubated at 37°C for 24 h (WCE). Overall, Salmonella organisms were detected on 21, 24, and 32 of 40 prechill carcasses by NSM, WCR, and WCE, respectively, while 2, 2, and 19 of 40 postchill carcasses were positive by the respective methods. Prechill carcasses were 64% (77 of 120) positive for Salmonella, while postchill carcasses were 19% (23 of 120) positive. Commercial processing reduced the positive-sample prevalence by 45%. Salmonella organisms were detected on 20% (24 of 120) of the samples from plant 1 and 63% (76 of 120) of the carcasses from plant 2. This study demonstrates significant differences in the results for Salmonella prevalence among sampling methods both before and after immersion chilling, as well as between processing plants on days that samples were taken.


Subject(s)
Chickens/microbiology , Food Handling/methods , Food-Processing Industry/methods , Salmonella/isolation & purification , Animals , Cold Temperature , Colony Count, Microbial , Food-Processing Industry/standards , Immersion , Neck/microbiology , Salmonella/growth & development , Skin/microbiology
16.
Poult Sci ; 90(7): 1586-93, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21673176

ABSTRACT

These studies evaluated the bacterial level of unwashed and washed shell eggs from caged and cage-free laying hens. Hy-Line W-36 White and Hy-Line Brown laying hens were housed on all wire slats or all shavings floor systems. On the sampling days for experiments 1, 2, and 3, 20 eggs were collected from each pen for bacterial analyses. Ten of the eggs collected from each pen were washed for 1 min with a commercial egg-washing solution, whereas the remaining 10 eggs were unwashed before sampling the eggshell and shell membranes for aerobic bacteria and coliforms (experiment 1 only). In experiment 1, the aerobic plate counts (APC) of unwashed eggs produced in the shavings, slats, and caged-housing systems were 4.0, 3.6, and 3.1 log(10) cfu/mL of rinsate, respectively. Washing eggs significantly (P < 0.05) reduced APC by 1.6 log(10) cfu/mL and reduced the prevalence of coliforms by 12%. In experiment 2, unwashed eggs produced by hens in triple-deck cages from 57 to 62 wk (previously housed on shavings, slats, and cages) did not differ, with APC ranging from 0.6 to 0.8 log(10) cfu/mL. Washing eggs continued to significantly reduce APC to below 0.2 log(10) cfu/mL. In experiment 3, the APC for unwashed eggs were within 0.4 log below the APC attained for unwashed eggs in experiment 1, although hen density was 28% of that used in experiment 1. Washing eggs further lowered the APC to 0.4 to 0.7 log(10) cfu/mL, a 2.7-log reduction. These results indicate that shell bacterial levels are similar after washing for eggs from hens housed in these caged and cage-free environments. However, housing hens in cages with manure removal belts resulted in lower APC for both unwashed and washed eggs (compared with eggs from hens housed in a room with shavings, slats, and cages).


Subject(s)
Chickens/microbiology , Egg Shell/microbiology , Eggs/microbiology , Food Handling/methods , Food Microbiology/methods , Housing, Animal , Animals , Colony Count, Microbial/veterinary , Enterobacteriaceae/isolation & purification , Female
17.
Poult Sci ; 90(7): 1609-15, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21673179

ABSTRACT

This study compared surface and deep eggshell aerobic bacteria recovered by the rinse and crush-and-rub sampling methods for commercial hatching eggs after treatment with sanitizers. Eggs were arranged into 5 treatments consisting of no treatment, water, and 3 sanitizers. The sanitizers were H(2)O(2), phenol, and Q(4)B (a compound chemical containing 4 quaternary ammoniums and 1 biguanide moiety). Eggs were sprayed according to treatment and allowed to dry for 1 h before sampling. To collect samples for the eggshell rinse, each egg was massaged in a plastic bag with 20 mL of saline. Eggshells were then aseptically opened and their contents were discarded before being individually crushed into 50-mL centrifuge tubes containing 20 mL of saline. Aerobic bacteria were enumerated on Petrifilm after 48 h of incubation at 37°C. Aerobic bacteria recovered (log(10) cfu/mL) from the eggshell rinse were highest and similar for the no-treatment (4.0) and water (3.7) groups, lower for the phenol (3.2) and H(2)O(2) (3.1) groups, and lowest for the Q(4)B (2.4) group. Aerobic bacteria levels with the crush-and-rub method were similar for the no-treatment (2.5) and water (2.3) groups, lower for the phenol (1.6) group, intermediate for the H(2)O(2) (1.2) group, and lowest for the Q(4)B (0.9) group. The overall correlation between the rinse and crush-and-rub sampling methods for individual egg aerobic bacteria counts was r = 0.71. The correlation within each treatment revealed the following r values: no treatment, 0.55; water, 0.72; H(2)O(2), 0.67; phenol, 0.73; and Q(4)B, 0.38. A second experiment was designed to further examine the lower aerobic bacterial levels recovered by the crush-and-rub method (for previously rinsed eggs) than the levels recovered in the initial eggshell rinse sample. Eggs were either rinsed and then crushed and rubbed, or they were only crushed and rubbed without a prior rinse. Results confirmed a significant decrease (1.5 log(10) cfu/mL) in bacteria levels between the initial rinse (4.4) and the subsequent crush and rub (2.9) for the same eggshell. For the crush-and-rub eggs with no previous rinsing, the bacteria recovery level (3.9) was not significantly different from levels for the rinse method. Therefore, either the rinse or crush-and-rub sampling methods can be used to recover similar levels of eggshell aerobic bacteria.


Subject(s)
Bacteria, Aerobic/isolation & purification , Bacterial Infections/prevention & control , Chickens/microbiology , Disinfection/methods , Eggs/microbiology , Food Handling/methods , Animals , Colony Count, Microbial/veterinary , Female , Statistics, Nonparametric
18.
Avian Dis ; 55(4): 580-7, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22312977

ABSTRACT

In each of five sequential trials, laying hens (56-72 wk of age) were challenged with Salmonella and Campylobacter, and 1 wk postinoculation, the challenged hens (n = 3) were commingled with nonchallenged hens (n = 12) in conventional wire cages, on all-wire slats, or on all-shavings floor housing systems. After 12 days, challenged and nonchallenged hens were euthanatized for sample collection. Ceca were aseptically collected from all hens, and the spleen, liver/gallbladder (LGB), lower (LRT) and upper (URT) reproductive tracts, and ovarian follicles (mature and immature) were collected from only the challenged hens after commingling. Samples were divided equally and cultured separately for Salmonella and Campylobacter. Differences in the horizontal transmission of the challenge Salmonella to nonchallenged hens housed in cages (12%), on slats (15%), and on shavings (14%) were not significantly different (P > 0.05) from the challenged pen-mate hens over the five trials. However, with the inclusion of residual environmental Salmonella, the recovery of Salmonella from nonchallenged hens housed in cages was lowest at 15%, intermediate for hens on slats at 20%, and highest for hens on shavings at 38%. Among challenged hens housed in cages, Salmonella was recovered from only 27% of the cecum and LRT samples. From challenged hens housed on slats, Salmonella was recovered from 38% of the cecum, 12% of the spleen, 19% of the LGB, 44% of the LRT, and 19% of the URT samples. From challenged hens housed on shavings, Salmonella was recovered from 31% of the cecum; 15% of the spleen, LGB, and URT; and 31% of the LRT samples. Horizontal transmission of Campylobacter among nonchallenged pen-mate hens was significantly lower for hens housed in cages at 28% than for hens on shavings at 47%, with hens on slats being intermediate at 36%. For challenged hens housed in cages, Campylobacter was recovered from 27% of the cecum, 13% of the LRT, 7% of the URT, and 17% of the follicle samples. Among the challenged hens housed on slats, Campylobacter was recovered from 44% of the cecum, 6% of the spleen, 19% of the LGB, 12% of the LRT, 6% of the URT, and 14% of the follicle samples. Among challenged hens housed on shavings, Campylobacter was recovered from 46% of the cecum, 8% of the LRT and URT, and 40% of the follicle samples. The overall results of this study indicate that the caged housing system provided the lowest horizontal transmission level of Salmonella and Campylobacter among egg-laying hens.


Subject(s)
Campylobacter Infections/veterinary , Chickens , Housing, Animal , Poultry Diseases/microbiology , Salmonella Infections, Animal/transmission , Animals , Campylobacter Infections/transmission , Eggs/microbiology , Female , Genitalia, Female/microbiology , Oviposition , Poultry Diseases/transmission
19.
Avian Dis ; 55(4): 588-92, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22312978

ABSTRACT

This study was conducted to evaluate the influence of a vancomycin pretreatment on the ability of marker (nalidixic-acid resistant) Salmonella Enteritidis (SE(M)), field Salmonella Enteritidis (SE(E)), and marker Salmonella Typhimurium (ST(M)) strains to colonize within the intestinal and reproductive tracts and translocate to other organs of leghorn laying hens. In each of three trials, caged laying hens (76, 26, and 33 wk ofage) were divided into six groups designated to receive SE(M), SE(F), or ST(M), and half were pretreated with vancomycin (n = 11-12 hens). Vancomycin-treated hens received 10 mg vancomycin in saline/kilogram body weight orally for 5 days to inhibit Gram-positive bacteria within the intestines. On Day 6, all hens were concurrently challenged by oral, intravaginal, and intracolonal routes with Salmonella and placed into separate floor chambers by Salmonella strain. Two weeks postinoculation, all hens were euthanatized and the ceca, spleen, liver/gall bladder (LGB), upper (URT), and lower (LRT) reproductive tracts, and ovarian follicles were aseptically collected, and analyzed for Salmonella. Results did not differ for the three hen's ages and were therefore combined. The vancomycin pretreatment also had no significant effect on the colonization ability of SE(M), SE(F) or ST(M), and therefore results were combined within Salmonella strain. The marker strain of Salmonella Enteritidis was recovered from 21% of ceca, 4% of LGB, 9% of LRT, and 17% of the fecal samples. The field strain of Salmonella Enteritidis was recovered from 88% of ceca, 96% of spleen, 92% of LGB, 30% of LRT, 4% of URT, 13% of follicle, and 42% of the fecal samples. The marker strain of Salmonella Typhimurium was recovered from 100% of ceca, 74% of spleen, 91% of LGB, 30% of LRT, 9% of URT, 9% of follicle, and 100% of the fecal samples. Among ceca, spleen, LGB, and fecal samples, SE(F) and ST(M) colonization was significantly greater than SE(M) colonization. Overall prevalence of Salmonella in the reproductive tracts of challenged hens was relatively low, ranging from 4% to 30%.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chickens , Salmonella Infections, Animal/prevention & control , Salmonella enteritidis/isolation & purification , Salmonella typhimurium/isolation & purification , Vancomycin/pharmacology , Animals , Anti-Bacterial Agents/administration & dosage , Carrier State , Female , Salmonella enteritidis/classification , Salmonella typhimurium/classification , Vancomycin/administration & dosage
20.
Poult Sci ; 85(4): 619-24, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16615345

ABSTRACT

It has been demonstrated that horizontal and vertical transmission of Salmonella and Campylobacter can occur in broiler breeder flocks. The mechanism of this transmission is still unclear. Previously negative broiler breeder flocks have been reported to become positive with Salmonella, Campylobacter, or both after the introduction of "spike" roosters at 45 wk of age. To determine whether the rooster semen is a possible source of transmission to hens for colonization, we evaluated the association of both Salmonella and Campylobacter spp. to segments (head, midpiece, and tail) of individual spermatozoa after artificial inoculation. Salmonella typhimurium, Salmonella heidelberg, and Salmonella montevideo, or Campylobacter jejuni (in 0.85% saline) was added to a freshly collected (by abdominal massage) aliquot of pooled semen from roosters housed in individual cages. The semen and bacteria solutions were incubated 1 h at room temperature. Samples were fixed using Karnosvsky and Zamboni fixatives for 24 h prior to centrifuging and rinsing in 0.1 M cacodylate x HCl buffer. Individual aliquot samples were then subjected to both scanning (JSM-5800) and transmission (JEM-1210) electron microscopy. The scanning electron microscopy showed that Salmonella was associated with all 3 segments (head, midpiece, and tail) of the spermatozoa and apparently equally distributed. Campylobacter was mainly associated with the midpiece and tail segments; few isolates were located on the head segment. The transmission electron microscopy showed apparent attachment of Salmonella and Campylobacter to the spermatozoa.


Subject(s)
Bacterial Adhesion , Campylobacter/physiology , Chickens/microbiology , Salmonella/physiology , Spermatozoa/microbiology , Animals , Campylobacter/ultrastructure , Campylobacter Infections/transmission , Campylobacter Infections/veterinary , Insemination, Artificial/veterinary , Male , Salmonella/ultrastructure , Salmonella Infections, Animal/transmission , Spermatozoa/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...