Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2280, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480738

ABSTRACT

Cross-presentation by type 1 DCs (cDC1) is critical to induce and sustain antitumoral CD8 T cell responses to model antigens, in various tumor settings. However, the impact of cross-presenting cDC1 and the potential of DC-based therapies in tumors carrying varied levels of bona-fide neoantigens (neoAgs) remain unclear. Here we develop a hypermutated model of non-small cell lung cancer in female mice, encoding genuine MHC-I neoepitopes to study neoAgs-specific CD8 T cell responses in spontaneous settings and upon Flt3L + αCD40 (DC-therapy). We find that cDC1 are required to generate broad CD8 responses against a range of diverse neoAgs. DC-therapy promotes immunogenicity of weaker neoAgs and strongly inhibits the growth of high tumor-mutational burden (TMB) tumors. In contrast, low TMB tumors respond poorly to DC-therapy, generating mild CD8 T cell responses that are not sufficient to block progression. scRNA transcriptional analysis, immune profiling and functional assays unveil the changes induced by DC-therapy in lung tissues, which comprise accumulation of cDC1 with increased immunostimulatory properties and less exhausted effector CD8 T cells. We conclude that boosting cDC1 activity is critical to broaden the diversity of anti-tumoral CD8 T cell responses and to leverage neoAgs content for therapeutic advantage.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Female , Mice , Animals , Dendritic Cells , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , CD8-Positive T-Lymphocytes , Cross-Priming
2.
Methods Mol Biol ; 2618: 83-92, 2023.
Article in English | MEDLINE | ID: mdl-36905510

ABSTRACT

Dendritic cells (DCs) are mononuclear phagocytes of hematopoietic origin residing in lymphoid and nonlymphoid tissues. DCs are often referred as the sentinels of the immune system as they can sense pathogens and danger signals. Upon activation, DCs migrate to the draining lymph nodes and present antigens to naïve T cells to trigger adaptive immunity. Hematopoietic progenitors for DCs reside in the adult bone marrow (BM). Therefore, BM cell culture systems have been developed to generate large amounts of primary DCs in vitro conveniently enabling to analyze their developmental and functional features. Here, we review various protocols enabling to generate DCs in vitro from murine BM cells and discuss the cellular heterogeneity of each culture system.


Subject(s)
Bone Marrow , T-Lymphocytes , Animals , Mice , Bone Marrow Cells , Cell Differentiation , Cells, Cultured , Dendritic Cells , Mice, Inbred C57BL
3.
Methods Mol Biol ; 2618: 121-132, 2023.
Article in English | MEDLINE | ID: mdl-36905513

ABSTRACT

Dendritic cells (DCs) are professional antigen-presenting cells controlling the activation of T cells and thus regulating adaptive immune response against pathogens or tumors. Modeling human DC differentiation and function is crucial for our understanding of immune response and the development of new therapies. Considering DC rarity in human blood, in vitro systems allowing their faithful generation are needed. This chapter will describe a DC differentiation method based on the co-culture of CD34+ cord blood progenitors together with mesenchymal stromal cells (eMSCs) engineered to deliver growth factors and chemokines.


Subject(s)
Dendritic Cells , Fetal Blood , Humans , Cells, Cultured , Antigens, CD34/metabolism , Cell Differentiation , Cell Adhesion Molecules
4.
Cancer Cell Int ; 23(1): 15, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36726173

ABSTRACT

While positive social-behavioral factors predict longer survival in cancer patients, the underlying mechanisms are unknown. Since tumor metastasis are the major cancer mortality factor, we investigated how an enriched environment (EE) conductive to enhanced sensory, cognitive and motor stimulation impact metastatic progression in lungs following intravasation in the circulation. We find that mice housed in EE exhibited reduced number of lung metastatic foci compared to control mice housed in a standard environment (SE). Compared to SE mice, EE mice increased lung inflammation as early as 4 days after circulating tumor cells extravasation. The impact of environmental signals on lung metastasis is independent of adrenergic receptors signaling. By contrast, we find that serum corticosterone levels are lower in EE mice and that glucocorticoid receptor (GR) antagonist reduces the number of lung metastasis in SE mice. In addition, the difference of the number of lung metastasis between SE and EE mice is abolished when inflammatory monocytes are rendered deficient in GR signaling. This decreased GR signaling in inflammatory monocytes of SE mice results in an exacerbated inflammatory profile in the lung. Our study shows that not only EE reduces late stages of metastatic progression in lungs but disclose a novel anti-tumor mechanism whereby GR-dependent reprogramming of inflammatory monocytes can inhibit metastatic progression in lungs. Moreover, while inflammatory monocytes have been shown to promote cancer progression, they also have an anti-tumor effect, suggesting that their role is more complex than currently thought.

5.
Front Immunol ; 13: 903069, 2022.
Article in English | MEDLINE | ID: mdl-36325333

ABSTRACT

Macrophages from human and mouse skin share phenotypic and functional features, but remain to be characterized in pathological skin conditions. Skin-resident macrophages are known to derive from embryonic precursors or from adult hematopoiesis. In this report, we investigated the origins, phenotypes and functions of macrophage subsets in mouse and human skin and in cutaneous squamous cell carcinoma (cSCC) using the spectral flow cytometry technology that enables cell autofluorescence to be considered as a full-fledged parameter. Autofluorescence identifies macrophage subsets expressing the CD206 mannose receptor in human peri-tumoral skin and cSCC. In mouse, all AF+ macrophages express the CD206 marker, a subset of which also displaying the TIM-4 marker. While TIM-4-CD206+ AF+ macrophages can differentiate from bone-marrow monocytes and infiltrate skin and tumor, TIM-4 identifies exclusively a skin-resident AF+ macrophage subset that can derive from prenatal hematopoiesis which is absent in tumor core. In mouse and human, AF+ macrophages from perilesional skin and cSCC are highly phagocytic cells contrary to their AF- counterpart, thus identifying autofluorescence as a bona fide marker for phagocytosis. Our data bring to light autofluorescence as a functional marker characterizing subsets of phagocytic macrophages in skin and cSCC. Autofluorescence can thus be considered as an attractive marker of function of macrophage subsets in pathological context.


Subject(s)
Carcinoma, Squamous Cell , Skin Neoplasms , Adult , Humans , Animals , Mice , Carcinoma, Squamous Cell/pathology , Skin Neoplasms/pathology , Phagocytosis , Macrophages/pathology , Monocytes
6.
Front Immunol ; 12: 631279, 2021.
Article in English | MEDLINE | ID: mdl-33790904

ABSTRACT

Tissue engineering opens multiple opportunities in regenerative medicine, drug testing, and modeling of the hematopoiesis in health and disease. Recapitulating the organization of physiological microenvironments supporting leukocyte development is essential to model faithfully the development of immune cells. Hematopoietic organs are shaped by spatially organized niches defined by multiple cellular contributions. A shared feature of immune niches is the presence of mesenchymal stromal cells endowed with unique roles in organizing niche development, maintenance, and function. Here, we review challenges and opportunities in harnessing stromal cells for the engineering of artificial immune niches and hematopoietic organoids recapitulating leukocyte ontogeny both in vitro and in vivo.


Subject(s)
Mesenchymal Stem Cells/physiology , Stem Cell Niche/physiology , Stromal Cells/metabolism , Tissue Engineering/methods , Animals , Bone Marrow Cells/metabolism , Humans , Mesenchymal Stem Cells/immunology , Mice , Stem Cell Niche/genetics , Stem Cell Niche/immunology , Stromal Cells/immunology
7.
J Invest Dermatol ; 141(10): 2369-2379, 2021 10.
Article in English | MEDLINE | ID: mdl-33831432

ABSTRACT

NK cells and tissue-resident innate lymphoid cells (ILCs) are innate effectors found in the skin. To investigate their temporal dynamics and specific functions throughout the development of cutaneous squamous cell carcinoma (cSCC), we combined transcriptomic and immunophenotyping analyses in mouse and human cSCCs. We identified an infiltration of NK cells and ILC1s as well as the presence of a few ILC3s. Adoptive transfer of NK cells in NK cell‒ and ILC-deficient Nfil3-/- mice revealed a role for NK cells in early control of cSCC. During tumor progression, we identified a population skewing with the infiltration of atypical ILC1 secreting inflammatory cytokines but reduced levels of IFN-γ at the papilloma stage. NK cells and ILC1s were functionally impaired, with reduced cytotoxicity and IFN-γ secretion associated with the downregulation of activating receptors. They also showed a high degree of heterogeneity in mouse and human cSCCs with the expression of several markers of exhaustion, including TIGIT on NK cells and PD-1 and TIM-3 on ILC1s. Our data show an enrichment in inflammatory ILC1 at the precancerous stage together with impaired antitumor functions in NK cells and ILC1 that could contribute to the development of cSCC and thus suggest that future immunotherapies should take both ILC populations into account.


Subject(s)
Carcinoma, Squamous Cell/immunology , Killer Cells, Natural/physiology , Lymphocytes/physiology , Skin Neoplasms/immunology , Adoptive Transfer , Animals , Basic-Leucine Zipper Transcription Factors/physiology , Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/pathology , Humans , Immunity, Innate , Killer Cells, Natural/immunology , Lymphocytes/immunology , Mice , Natural Cytotoxicity Triggering Receptor 1/analysis , Neoplasm Staging , Skin Neoplasms/etiology , Skin Neoplasms/pathology
8.
Cancer Immunol Res ; 8(9): 1122-1138, 2020 09.
Article in English | MEDLINE | ID: mdl-32665262

ABSTRACT

Inherent immune suppression represents a major challenge in the treatment of human cancer. The extracellular matrix molecule tenascin-C promotes cancer by multiple mechanisms, yet the roles of tenascin-C in tumor immunity are incompletely understood. Using a 4NQO-induced oral squamous cell carcinoma (OSCC) model with abundant and absent tenascin-C, we demonstrated that tenascin-C enforced an immune-suppressive lymphoid stroma via CCL21/CCR7 signaling, leading to increased metastatic tumors. Through TLR4, tenascin-C increased expression of CCR7 in CD11c+ myeloid cells. By inducing CCL21 in lymphatic endothelial cells via integrin α9ß1 and binding to CCL21, tenascin-C immobilized CD11c+ cells in the stroma. Inversion of the lymph node-to-tumor CCL21 gradient, recruitment of T regulatory cells, high expression of anti-inflammatory cytokines, and matrisomal components were hallmarks of the tenascin-C-instructed lymphoid stroma. Ablation of tenascin-C or CCR7 blockade inhibited the lymphoid immune-suppressive stromal properties, reducing tumor growth, progression, and metastasis. Thus, targeting CCR7 could be relevant in human head and neck tumors, as high tenascin-C expression and an immune-suppressive stroma correlate to poor patient survival.


Subject(s)
Mouth Neoplasms/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Tenascin/immunology , Animals , Chemokine CCL21/immunology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mouth Neoplasms/pathology , Receptors, CCR7/immunology , Recombinant Proteins/pharmacology , T-Lymphocytes, Regulatory/immunology , Tenascin/pharmacology , Tumor Microenvironment/immunology
9.
Cancers (Basel) ; 12(7)2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32664318

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC) development has been linked to immune dysfunctions but the mechanisms are still unclear. Here, we report a progressive infiltration of tumor-associated neutrophils (TANs) in precancerous and established cSCC lesions from chemically induced skin carcinogenesis. Comparative in-depth gene expression analyses identified a predominant protumor gene expression signature of TANs in lesions compared to their respective surrounding skin. In addition, in vivo depletion of neutrophils delayed tumor growth and significantly increased the frequency of proliferating IFN-γ (interferon-γ)-producing CD8+ T cells. Mechanisms that limited antitumor responses involved high arginase activity, production of reactive oxygen species (ROS) and nitrite (NO), and the expression of programmed death-ligand 1 (PD-L1) on TAN, concomitantly with an induction of PD-1 on CD8+ T cells, which correlated with tumor size. Our data highlight the relevance of targeting neutrophils and PD-L1-PD-1 (programmed death-1) interaction in the treatment of cSCC.

10.
Immunity ; 53(2): 335-352.e8, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32610077

ABSTRACT

Dendritic cells (DCs) are antigen-presenting cells controlling T cell activation. In humans, the diversity, ontogeny, and functional capabilities of DC subsets are not fully understood. Here, we identified circulating CD88-CD1c+CD163+ DCs (called DC3s) as immediate precursors of inflammatory CD88-CD14+CD1c+CD163+FcεRI+ DCs. DC3s develop via a specific pathway activated by GM-CSF, independent of cDC-restricted (CDP) and monocyte-restricted (cMoP) progenitors. Like classical DCs but unlike monocytes, DC3s drove activation of naive T cells. In vitro, DC3s displayed a distinctive ability to prime CD8+ T cells expressing a tissue homing signature and the epithelial homing alpha-E integrin (CD103) through transforming growth factor ß (TGF-ß) signaling. In vivo, DC3s infiltrated luminal breast cancer primary tumors, and DC3 infiltration correlated positively with CD8+CD103+CD69+ tissue-resident memory T cells. Together, these findings define DC3s as a lineage of inflammatory DCs endowed with a strong potential to regulate tumor immunity.


Subject(s)
Antigens, CD1/metabolism , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Breast Neoplasms/immunology , CD8-Positive T-Lymphocytes/cytology , Dendritic Cells/immunology , Glycoproteins/metabolism , Integrin alpha Chains/metabolism , Receptors, Cell Surface/metabolism , Animals , CD8 Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Cell Line, Tumor , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Lymphocyte Activation/immunology , Mice , Mice, Inbred NOD , Transforming Growth Factor beta1/metabolism , fms-Like Tyrosine Kinase 3/metabolism
11.
Nat Commun ; 11(1): 2054, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32345968

ABSTRACT

Classical dendritic cells (cDCs) are rare sentinel cells specialized in the regulation of adaptive immunity. Modeling cDC development is crucial to study cDCs and harness their therapeutic potential. Here we address whether cDCs could differentiate in response to trophic cues delivered by mesenchymal components of the hematopoietic niche. We find that mesenchymal stromal cells engineered to express membrane-bound FLT3L and stem cell factor (SCF) together with CXCL12 induce the specification of human cDCs from CD34+ hematopoietic stem and progenitor cells (HSPCs). Engraftment of engineered mesenchymal stromal cells (eMSCs) together with CD34+ HSPCs creates an in vivo synthetic niche in the dermis of immunodeficient mice driving the differentiation of cDCs and CD123+AXL+CD327+ pre/AS-DCs. cDC2s generated in vivo display higher levels of resemblance with human blood cDCs unattained by in vitro-generated subsets. Altogether, eMSCs provide a unique platform recapitulating the full spectrum of cDC subsets enabling their functional characterization in vivo.


Subject(s)
Dendritic Cells/cytology , Stem Cell Niche , Animals , Biomarkers/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Cell Differentiation/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Chemokine CXCL12/pharmacology , Cluster Analysis , Collagen/pharmacology , Dendritic Cells/drug effects , Drug Combinations , Humans , Laminin/pharmacology , Membrane Proteins/metabolism , Mice , Organoids/drug effects , Organoids/metabolism , Proteoglycans/pharmacology , Stem Cell Niche/drug effects , Stromal Cells/cytology , Stromal Cells/drug effects , Stromal Cells/metabolism
12.
Int Rev Cell Mol Biol ; 349: 1-54, 2019.
Article in English | MEDLINE | ID: mdl-31759429

ABSTRACT

Classical dendritic cells (cDCs) are mononuclear phagocytes of hematopoietic origin specialized in the induction and regulation of adaptive immunity. Initially defined by their unique T cell activation potential, it became quickly apparent that cDCs would be difficult to distinguish from other phagocyte lineages, by solely relying on marker-based approaches. Today, cDCs definition increasingly embed their unique ontogenetic features. A growing consensus defines cDCs on multiple criteria including: (1) dependency on the fms-like tyrosine kinase 3 ligand hematopoietic growth factor, (2) development from the common DC bone marrow progenitor, (3) constitutive expression of the transcription factor ZBTB46 and (4) the ability to induce, after adequate stimulation, the activation of naïve T lymphocytes. cDCs are a heterogeneous cell population that contains two main subsets, named type 1 and type 2 cDCs, arising from divergent ontogenetic pathways and populating multiple lymphoid and non-lymphoid tissues. Here, we present recent knowledge on the cellular and molecular pathways controlling the specification and commitment of cDC subsets from murine and human hematopoietic stem cells.


Subject(s)
Dendritic Cells/cytology , Dendritic Cells/immunology , Animals , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Transcription Factors/metabolism
13.
Med Sci (Paris) ; 34(5): 439-447, 2018 May.
Article in French | MEDLINE | ID: mdl-29900847

ABSTRACT

The last decade has been an era of accelerated technological progress for flow cytometry. New technologies have been developed such as mass cytometry in which standard fluorochromes have been replaced by lanthanide-based non-radioactive metals and by spectral cytometry that measures the complete fluorescence spectrum. In this review, we schematically describe conventional, mass and spectral cytometry and present the plus and minus of each technology.


Subject(s)
Flow Cytometry/trends , Fluorescent Dyes/chemistry , Light , Mass Spectrometry , Animals , Flow Cytometry/instrumentation , Flow Cytometry/methods , Fluorescence , Fluorescent Dyes/pharmacology , Humans , Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Spectrum Analysis/instrumentation , Spectrum Analysis/methods
14.
Front Immunol ; 8: 63, 2017.
Article in English | MEDLINE | ID: mdl-28203239

ABSTRACT

Persistent B cell responses in mucosal tissues are crucial to control infection against sexually transmitted pathogens like human immunodeficiency virus 1 (HIV-1). The genital tract is a major site of infection by HIV. Sublingual (SL) immunization in mice was previously shown to generate HIV-specific B cell immunity that disseminates to the genital tract. We report here the immunogenicity in female cynomolgus macaques of a SL vaccine based on a modified gp41 polypeptide coupled to the cholera toxin B subunit designed to expose hidden epitopes and to improve mucosal retention. Combined SL/intramuscular (IM) immunization with such mucoadhesive gp41-based vaccine elicited mucosal HIV-specific IgG and IgA antibodies more efficiently than IM immunization alone. This strategy increased the number and duration of gp41-specific IgA secreting cells. Importantly, combined immunization improved the generation of functional antibodies 3 months after vaccination as detected in HIV-neutralizing assays. Therefore, SL immunization represents a promising vaccine strategy to block HIV-1 transmission.

15.
PLoS One ; 10(12): e0143224, 2015.
Article in English | MEDLINE | ID: mdl-26630176

ABSTRACT

Innate and adaptive immune cells work in concert to generate efficient protection at mucosal surface. Vaginal mucosa is an epithelial tissue that contains innate and adaptive immune effector cells. Our previous studies demonstrated that vaginal administration of Cholera toxin -based vaccines generate antigen-specific CD8 T cells through the stimulation of local dendritic cells (DC). Innate lymphoid cells (ILC) are a group of lymphocytes localized in epithelial tissues that have important immune functions against pathogens and in tissue homeostasis. Their contribution to vaccine-induced mucosal T cell responses is an important issue for the design of protective vaccines. We report here that the vaginal mucosa contains a heterogeneous population of NKp46+ ILC that includes conventional NK cells and ILC1-like cells. We show that vaginal NKp46+ ILC dampen vaccine-induced CD8 T cell responses generated after local immunization. Indeed, in vivo depletion of NKp46+ ILC with anti-NK1.1 antibody or NKG2D blockade increases the magnitude of vaginal OVA-specific CD8 T cells. Furthermore, such treatments also increase the number of DC in the vagina. NKG2D ligands being expressed by vaginal DC but not by CD8 T cells, these results support that NKp46+ ILC limit mucosal CD8 T cell responses indirectly through the NKG2D-dependent elimination of vaginal DC. Our data reveal an unappreciated role of NKp46+ ILC in the regulation of mucosal CD8 T cell responses.


Subject(s)
Antigens, Ly/metabolism , CD8-Positive T-Lymphocytes/immunology , Cholera Toxin/immunology , Immunity, Innate/immunology , Natural Cytotoxicity Triggering Receptor 1/metabolism , Vaccination , Vaccines/immunology , Vagina/immunology , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Count , Dendritic Cells/immunology , Female , Ligands , Mice , Mice, Inbred C57BL , NK Cell Lectin-Like Receptor Subfamily K/metabolism
16.
EMBO J ; 34(15): 2042-58, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26139534

ABSTRACT

T cells infiltrating neoplasms express surface molecules typical of chronically virus-stimulated T cells, often termed "exhausted" T cells. We compared the transcriptome of "exhausted" CD8 T cells infiltrating autochthonous melanomas to those of naïve and acutely stimulated CD8 T cells. Despite strong similarities between transcriptional signatures of tumor- and virus-induced exhausted CD8 T cells, notable differences appeared. Among transcriptional regulators, Nr4a2 and Maf were highly overexpressed in tumor-exhausted T cells and significantly upregulated in CD8 T cells from human melanoma metastases. Transduction of murine tumor-specific CD8 T cells to express Maf partially reproduced the transcriptional program associated with tumor-induced exhaustion. Upon adoptive transfer, the transduced cells showed normal homeostasis but failed to accumulate in tumor-bearing hosts and developed defective anti-tumor effector responses. We further identified TGFß and IL-6 as main inducers of Maf expression in CD8 T cells and showed that Maf-deleted tumor-specific CD8 T cells were much more potent to restrain tumor growth in vivo. Therefore, the melanoma microenvironment contributes to skewing of CD8 T cell differentiation programs, in part by TGFß/IL-6-mediated induction of Maf.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Cell Differentiation/immunology , Melanoma/metabolism , Proto-Oncogene Proteins c-maf/metabolism , Tumor Microenvironment/physiology , Animals , CD8-Positive T-Lymphocytes/metabolism , DNA Primers/genetics , Flow Cytometry , Gene Expression Profiling , Homeodomain Proteins/genetics , Interleukin-6/metabolism , Luciferases , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-maf/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Transforming Growth Factor beta/metabolism
17.
Proc Natl Acad Sci U S A ; 111(30): 11115-20, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-25024217

ABSTRACT

The transcription factor NF-κB is central to inflammatory signaling and activation of innate and adaptive immune responses. Activation of the NF-κB pathway is tightly controlled by several negative feedback mechanisms, including A20, an ubiquitin-modifying enzyme encoded by the tnfaip3 gene. Mice with selective deletion of A20 in myeloid, dendritic, or B cells recapitulate some human inflammatory pathology. As we observed high expression of A20 transcripts in dysfunctional CD8 T cells in an autochthonous melanoma, we analyzed the role of A20 in regulation of CD8 T-cell functions, using mice in which A20 was selectively deleted in mature conventional T cells. These mice developed lymphadenopathy and some organ infiltration by T cells but no splenomegaly and no detectable pathology. A20-deleted CD8 T cells had increased sensitivity to antigen stimulation with production of large amounts of IL-2 and IFNγ, correlated with sustained nuclear expression of NF-κB components reticuloendotheliosis oncogene c-Rel and p65. Overexpression of A20 by retroviral transduction of CD8 T cells dampened their intratumor accumulation and antitumor activity. In contrast, relief from the A20 brake in NF-κB activation in adoptively transferred antitumor CD8 T cells led to improved control of melanoma growth. Tumor-infiltrating A20-deleted CD8 T cells had enhanced production of IFNγ and TNFα and reduced expression of the inhibitory receptor programmed cell death 1. As manipulation of A20 expression in CD8 T cells did not result in pathologic manifestations in the mice, we propose it as a candidate to be targeted to increase antitumor efficiency of adoptive T-cell immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cysteine Endopeptidases/immunology , Immunity, Cellular , Intracellular Signaling Peptides and Proteins/immunology , Melanoma/immunology , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/pathology , Cysteine Endopeptidases/genetics , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Intracellular Signaling Peptides and Proteins/genetics , Melanoma/genetics , Melanoma/pathology , Mice , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/immunology , Tumor Necrosis Factor alpha-Induced Protein 3 , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...