Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Neuropsychopharmacol ; 18(2)2014 Dec 13.
Article in English | MEDLINE | ID: mdl-25522383

ABSTRACT

BACKGROUND: Monoamine reuptake inhibitors exhibit unique clinical profiles that reflect distinct engagement of the central nervous system (CNS) transporters. METHODS: We used a translational strategy, including rodent pharmacokinetic/pharmacodynamic modeling and positron emission tomography (PET) imaging in humans, to establish the transporter profile of TD-9855, a novel norepinephrine and serotonin reuptake inhibitor. RESULTS: TD-9855 was a potent inhibitor of norepinephrine (NE) and serotonin 5-HT uptake in vitro with an inhibitory selectivity of 4- to 10-fold for NE at human and rat transporters. TD-9855 engaged norepinephrine transporters (NET) and serotonin transporters (SERT) in rat spinal cord, with a plasma EC50 of 11.7 ng/mL and 50.8 ng/mL, respectively, consistent with modest selectivity for NET in vivo. Accounting for species differences in protein binding, the projected human NET and SERT plasma EC50 values were 5.5 ng/mL and 23.9 ng/mL, respectively. A single-dose, open-label PET study (4-20mg TD-9855, oral) was conducted in eight healthy males using the radiotracers [(11)C]-3-amino-4- [2-[(di(methyl)amino)methyl]phenyl]sulfanylbenzonitrile for SERT and [(11)C]-(S,S)-methylreboxetine for NET. The long pharmacokinetic half-life (30-40 h) of TD-9855 allowed for sequential assessment of SERT and NET occupancy in the same subject. The plasma EC50 for NET was estimated to be 1.21 ng/mL, and at doses of greater than 4 mg the projected steady-state NET occupancy is high (>75%). After a single oral dose of 20mg, SERT occupancy was 25 (±8)% at a plasma level of 6.35 ng/mL. CONCLUSIONS: These data establish the CNS penetration and transporter profile of TD-9855 and inform the selection of potential doses for future clinical evaluation.


Subject(s)
Neurotransmitter Uptake Inhibitors/pharmacology , Neurotransmitter Uptake Inhibitors/pharmacokinetics , Phenyl Ethers/pharmacology , Phenyl Ethers/pharmacokinetics , Piperidines/pharmacology , Piperidines/pharmacokinetics , Adult , Aniline Compounds , Animals , Blood Chemical Analysis , Brain/diagnostic imaging , Brain/drug effects , Brain/metabolism , Half-Life , Humans , Magnetic Resonance Imaging , Male , Models, Biological , Morpholines , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Positron-Emission Tomography , Radiopharmaceuticals , Rats, Sprague-Dawley , Reboxetine , Serotonin Plasma Membrane Transport Proteins/metabolism , Spinal Cord/drug effects , Spinal Cord/metabolism , Sulfides
2.
Clin Pharmacol Ther ; 94(1): 80-94, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23588303

ABSTRACT

Drug interactions due to efflux transport inhibition at the blood-brain barrier (BBB) have been receiving increasing scrutiny because of the theoretical possibility of adverse central nervous system (CNS) effects identified in preclinical studies. In this review, evidence from pharmacokinetic, pharmacodynamic, imaging, pharmacogenetic, and pharmacovigilance studies, along with drug safety reports, is presented supporting a low probability of modulating transporters at the human BBB by currently marketed drugs.


Subject(s)
Blood-Brain Barrier/metabolism , Drug Interactions , Membrane Transport Proteins/metabolism , Pharmaceutical Preparations , Biological Transport/physiology , Drug Design , Drug Evaluation, Preclinical , Humans , Pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...