Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Mutagenesis ; 27(5): 523-32, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22539226

ABSTRACT

The parasitic disease human African trypanomiasis (HAT), also known as sleeping sickness, is a highly neglected fatal condition endemic in sub-Saharan Africa, which is poorly treated with medicines that are toxic, no longer effective or very difficult to administer. New, safe, effective and easy-to-use treatments are urgently needed. Many nitroimidazoles possess antibacterial and antiprotozoal activity and examples such as tinidazole are used to treat trichomoniasis and guardiasis, but concerns about toxicity including genotoxicity limit their usefulness. Fexinidazole, a 2-substituted 5-nitroimidazole rediscovered by the Drugs for Neglected Diseases initiative (DNDi) after extensive compound mining of public and pharmaceutical company databases, has the potential to become a short-course, safe and effective oral treatment, curing both acute and chronic HAT. This paper describes the genotoxicity profile of fexinidazole and its two active metabolites, the sulfoxide and sulfone derivatives. All the three compounds are mutagenic in the Salmonella/Ames test; however, mutagenicity is either attenuated or lost in Ames Salmonella strains that lack one or more nitroreductase(s). It is known that these enzymes can nitroreduce compounds with low redox potentials, whereas their mammalian cell counterparts cannot, under normal conditions. Fexinidazole and its metabolites have low redox potentials and all mammalian cell assays to detect genetic toxicity, conducted for this study either in vitro (micronucleus test in human lymphocytes) or in vivo (ex vivo unscheduled DNA synthesis in rats; bone marrow micronucleus test in mice), were negative. Thus, fexinidazole does not pose a genotoxic hazard to patients and represents a promising drug candidate for HAT. Fexinidazole is expected to enter Phase II clinical trials in 2012.


Subject(s)
Mutagens/toxicity , Nitroimidazoles/toxicity , Trypanocidal Agents/toxicity , Animals , Bacteria/drug effects , Bacteria/enzymology , Bone Marrow Cells/drug effects , Hepatocytes/drug effects , Humans , Leukocytes, Mononuclear/drug effects , Male , Mice , Micronucleus Tests , Mutagenicity Tests , Mutagens/metabolism , Nitroimidazoles/metabolism , Nitroreductases/metabolism , Rats , Trypanocidal Agents/metabolism , Trypanosomiasis, African/drug therapy
2.
Antimicrob Agents Chemother ; 55(12): 5602-8, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21911566

ABSTRACT

Fexinidazole is a 5-nitroimidazole drug currently in clinical development for the treatment of human sleeping sickness (human African trypanosomiasis [HAT]), caused by infection with species of the protozoan parasite Trypanosoma brucei. The compound and its two principal metabolites, sulfoxide and sulfone, have been assessed for their ability to kill a range of T. brucei parasite strains in vitro and to cure both acute and chronic HAT disease models in the mouse. The parent molecule and both metabolites have shown trypanocidal activity in vitro in the 0.7-to-3.3 µM (0.2-to-0.9 µg/ml) range against all parasite strains tested. In vivo, fexinidazole is orally effective in curing both acute and chronic diseases in the mouse at doses of 100 mg/kg of body weight/day for 4 days and 200 mg/kg/day for 5 days, respectively. Pharmacokinetic data indicate that it is likely that the sulfoxide and sulfone metabolites provide most, if not all, of the in vivo killing activity. Fexinidazole and its metabolites require up to 48 h exposure in order to induce maximal trypanocidal efficacy in vitro. The parent drug and its metabolites show no in vitro cross-reactivity in terms of trypanocidal activity with either themselves or other known trypanocidal drugs in use in humans. The in vitro and in vivo antitrypanosomal activities of fexinidazole and its two principal metabolites provide evidence that the compound has the potential to be an effective oral treatment for both the T. b. gambiense and T. b. rhodesiense forms of human sleeping sickness and both stages of the disease.


Subject(s)
Nitroimidazoles/administration & dosage , Trypanocidal Agents/administration & dosage , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei rhodesiense/drug effects , Trypanosomiasis, African/drug therapy , Animals , Female , Humans , Mice , Nitroimidazoles/pharmacokinetics , Nitroimidazoles/pharmacology , Nitroimidazoles/therapeutic use , Parasitic Sensitivity Tests/methods , Safrole/analogs & derivatives , Safrole/metabolism , Sulfones/metabolism , Treatment Outcome , Trypanocidal Agents/pharmacokinetics , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanosoma brucei brucei/growth & development , Trypanosoma brucei rhodesiense/growth & development , Trypanosomiasis, African/parasitology
3.
PLoS One ; 6(6): e21161, 2011.
Article in English | MEDLINE | ID: mdl-21712992

ABSTRACT

BACKGROUND: Diabetes prevalence and body mass index reflect the nutritional profile of populations but have opposing effects on tuberculosis risk. Interactions between diabetes and BMI could help or hinder TB control in growing, aging, urbanizing populations. METHODS AND FINDINGS: We compiled data describing temporal changes in BMI, diabetes prevalence and population age structure in rural and urban areas for men and women in countries with high (India) and low (Rep. Korea) TB burdens. Using published data on the risks of TB associated with these factors, we calculated expected changes in TB incidence between 1998 and 2008. In India, TB incidence cases would have increased (28% from 1.7 m to 2.1 m) faster than population size (22%) because of adverse effects of aging, urbanization, changing BMI and rising diabetes prevalence, generating an increase in TB incidence per capita of 5.5% in 10 years. In India, general nutritional improvements were offset by a fall in BMI among the majority of men who live in rural areas. The growing prevalence of diabetes in India increased the annual number of TB cases in people with diabetes by 46% between 1998 and 2008. In Korea, by contrast, the number of TB cases increased more slowly (6.1% from 40,200 to 42,800) than population size (14%) because of positive effects of urbanization, increasing BMI and falling diabetes prevalence. Consequently, TB incidence per capita fell by 7.8% in 10 years. Rapid population aging was the most significant adverse effect in Korea. CONCLUSIONS: Nutritional and demographic changes had stronger adverse effects on TB in high-incidence India than in lower-incidence Korea. The unfavourable effects in both countries can be overcome by early drug treatment but, if left unchecked, could lead to an accelerating rise in TB incidence. The prevention and management of risk factors for TB would reinforce TB control by chemotherapy.


Subject(s)
Diabetes Mellitus/epidemiology , Nutritional Status , Tuberculosis/epidemiology , Adult , Body Mass Index , Female , Humans , India/epidemiology , Korea/epidemiology , Male , Risk Factors
4.
PLoS Negl Trop Dis ; 4(12): e923, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-21200426

ABSTRACT

BACKGROUND: Human African trypanosomiasis (HAT), also known as sleeping sickness, is a fatal parasitic disease caused by trypanosomes. Current treatment options for HAT are scarce, toxic, no longer effective, or very difficult to administer, in particular for the advanced, fatal stage of the disease (stage 2, chronic HAT). New safe, effective and easy-to-use treatments are urgently needed. Here it is shown that fexinidazole, a 2-substituted 5-nitroimidazole rediscovered by the Drugs for Neglected Diseases initiative (DNDi) after extensive compound mining efforts of more than 700 new and existing nitroheterocycles, could be a short-course, safe and effective oral treatment curing both acute and chronic HAT and that could be implemented at the primary health care level. To complete the preclinical development and meet the regulatory requirements before initiating human trials, the anti-parasitic properties and the pharmacokinetic, metabolic and toxicological profile of fexinidazole have been assessed. METHODS AND FINDINGS: Standard in vitro and in vivo anti-parasitic activity assays were conducted to assess drug efficacy in experimental models for HAT. In parallel, a full range of preclinical pharmacology and safety studies, as required by international regulatory guidelines before initiating human studies, have been conducted. Fexinidazole is moderately active in vitro against African trypanosomes (IC50 against laboratory strains and recent clinical isolates ranged between 0.16 and 0.93 µg/mL) and oral administration of fexinidazole at doses of 100 mg/kg/day for 4 days or 200 mg/kg/day for 5 days cured mice with acute and chronic infection respectively, the latter being a model for the advanced and fatal stage of the disease when parasites have disseminated into the brain. In laboratory animals, fexinidazole is well absorbed after oral administration and readily distributes throughout the body, including the brain. The absolute bioavailability of oral fexinidazole was 41% in mice, 30% in rats, and 10% in dogs. Furthermore, fexinidazole is rapidly metabolised in vivo to at least two biologically active metabolites (a sulfoxide and a sulfone derivative) that likely account for a significant portion of the therapeutic effect. Key pharmacokinetic parameter after oral absorption in mice for fexinidazole and its sulfoxide and sulfone metabolites are a C(max) of 500, 14171 and 13651 ng/mL respectively, and an AUC0₋24 of 424, 45031 and 96286 h.ng/mL respectively. Essentially similar PK profiles were observed in rats and dogs. Toxicology studies (including safety pharmacology and 4-weeks repeated-dose toxicokinetics in rat and dog) have shown that fexinidazole is well tolerated. The No Observed Adverse Event Levels in the 4-weeks repeated dose toxicity studies in rats and dogs was 200 mg/kg/day in both species, with no issues of concern identified for doses up to 800 mg/kg/day. While fexinidazole, like many nitroheterocycles, is mutagenic in the Ames test due to bacterial specific metabolism, it is not genotoxic to mammalian cells in vitro or in vivo as assessed in an in vitro micronucleus test on human lymphocytes, an in vivo mouse bone marrow micronucleus test, and an ex vivo unscheduled DNA synthesis test in rats. CONCLUSIONS: The results of the preclinical pharmacological and safety studies indicate that fexinidazole is a safe and effective oral drug candidate with no untoward effects that would preclude evaluation in man. The drug has entered first-in-human phase I studies in September 2009. Fexinidazole is the first new clinical drug candidate with the potential for treating advanced-stage sleeping sickness in thirty years.


Subject(s)
Antiprotozoal Agents/administration & dosage , Nitroimidazoles/administration & dosage , Trypanosomiasis, African/drug therapy , Administration, Oral , Animals , Antiprotozoal Agents/adverse effects , Antiprotozoal Agents/metabolism , Antiprotozoal Agents/pharmacokinetics , Disease Models, Animal , Dogs , Female , Inhibitory Concentration 50 , Mice , Nitroimidazoles/adverse effects , Nitroimidazoles/metabolism , Nitroimidazoles/pharmacokinetics , Parasitic Sensitivity Tests , Rats , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL