Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
2.
J Mol Biol ; 436(3): 168411, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38135181

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor belonging to the bHLH/PAS protein family and responding to hundreds of natural and chemical substances. It is primarily involved in the defense against chemical insults and bacterial infections or in the adaptive immune response, but also in the development of pathological conditions ranging from inflammatory to neoplastic disorders. Despite its prominent roles in many (patho)physiological processes, the lack of high-resolution structural data has precluded for thirty years an in-depth understanding of the structural mechanisms underlying ligand-binding specificity, promiscuity and activation of AHR. We recently reported a cryogenic electron microscopy (cryo-EM) structure of human AHR bound to the natural ligand indirubin, the chaperone Hsp90 and the co-chaperone XAP2 that provided the first experimental visualization of its ligand-binding PAS-B domain. Here, we report a 2.75 Å resolution structure of the AHR complex bound to the environmental pollutant benzo[a]pyrene (B[a]P). The structure substantiates the existence of a bipartite PAS-B ligand-binding pocket with a geometrically constrained primary binding site controlling ligand binding specificity and affinity, and a secondary binding site contributing to the binding promiscuity of AHR. We also report a docking study of B[a]P congeners that validates the B[a]P-bound PAS-B structure as a suitable model for accurate computational ligand binding assessment. Finally, comparison of our agonist-bound complex with the recently reported structures of mouse and fruit fly AHR PAS-B in different activation states suggests a ligand-induced loop conformational change potentially involved in the regulation of AHR function.


Subject(s)
Benzo(a)pyrene , Environmental Pollutants , Receptors, Aryl Hydrocarbon , Humans , Benzo(a)pyrene/chemistry , Binding Sites , Ligands , Protein Domains , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/chemistry , Environmental Pollutants/chemistry
3.
Front Toxicol ; 5: 1212509, 2023.
Article in English | MEDLINE | ID: mdl-37456981

ABSTRACT

In past times, the analysis of endocrine disrupting properties of chemicals has mainly been focused on (anti-)estrogenic or (anti-)androgenic properties, as well as on aspects of steroidogenesis and the modulation of thyroid signaling. More recently, disruption of energy metabolism and related signaling pathways by exogenous substances, so-called metabolism-disrupting chemicals (MDCs) have come into focus. While general effects such as body and organ weight changes are routinely monitored in animal studies, there is a clear lack of mechanistic test systems to determine and characterize the metabolism-disrupting potential of chemicals. In order to contribute to filling this gap, one of the project within EU-funded Partnership for the Assessment of Risks of Chemicals (PARC) aims at developing novel in vitro methods for the detection of endocrine metabolic disruptors. Efforts will comprise projects related to specific signaling pathways, for example, involving mTOR or xenobiotic-sensing nuclear receptors, studies on hepatocytes, adipocytes and pancreatic beta cells covering metabolic and morphological endpoints, as well as metabolism-related zebrafish-based tests as an alternative to classic rodent bioassays. This paper provides an overview of the approaches and methods of these PARC projects and how this will contribute to the improvement of the toxicological toolbox to identify substances with endocrine disrupting properties and to decipher their mechanisms of action.

4.
Endocrinology ; 164(4)2023 02 11.
Article in English | MEDLINE | ID: mdl-36750942

ABSTRACT

2,4-Di-tert-butylphenol (2,4-DTBP) is an important commercial antioxidant and a toxic natural secondary metabolite that has been detected in humans. However, there is scant information regarding its toxicological effects. We asked whether 2,4-DTBP is a potential obesogen. Using a human mesenchymal stem cell adipogenesis assay, we found that exposure to 2,4-DTBP led to increased lipid accumulation and expression of adipogenic marker genes. Antagonist assays revealed that 2,4-DTBP increased lipid accumulation by activating the peroxisome proliferator-activated receptor (PPAR) γ-retinoid X receptor (RXR) heterodimer. 2,4-DTBP likely activated the PPARγ/RXRα heterodimer by activating RXRα but not directly binding to PPARγ. We confirmed that 2,4-DTBP directly bound to RXRα by solving the crystal structure of this complex, then predicted and demonstrated that related compounds could also activate RXRα. Our study demonstrated that 2,4-DTBP and related chemicals could act as obesogens and endocrine disruptors via RXRs. These data showed that 2,4-DTBP belongs to a family of compounds whose endocrine-disrupting and obesogenic effects can be strongly modulated by their chemical composition. Structure-activity studies such as the present one could help guide the rational development of safer antioxidants that do not interact with important nuclear receptors having broad effects on human development and physiology.


Subject(s)
Adipogenesis , Mesenchymal Stem Cells , Humans , Retinoid X Receptors , PPAR gamma/metabolism , Lipids
5.
Nat Commun ; 13(1): 7010, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36385050

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates a broad spectrum of (patho)physiological processes in response to numerous substances including pollutants, natural products and metabolites. However, the scarcity of structural data precludes understanding of how AHR is activated by such diverse compounds. Our 2.85 Å structure of the human indirubin-bound AHR complex with the chaperone Hsp90 and the co-chaperone XAP2, reported herein, reveals a closed conformation Hsp90 dimer with AHR threaded through its lumen and XAP2 serving as a brace. Importantly, we disclose the long-awaited structure of the AHR PAS-B domain revealing a unique organisation of the ligand-binding pocket and the structural determinants of ligand-binding specificity and promiscuity of the receptor. By providing structural details of the molecular initiating event leading to AHR activation, our study rationalises almost forty years of biochemical data and provides a framework for future mechanistic studies and structure-guided drug design.


Subject(s)
HSP90 Heat-Shock Proteins , Intracellular Signaling Peptides and Proteins , Receptors, Aryl Hydrocarbon , Humans , Cryoelectron Microscopy , Cytosol/metabolism , HSP90 Heat-Shock Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Ligands , Receptors, Aryl Hydrocarbon/metabolism
6.
J Mol Endocrinol ; 69(3): 377-390, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35900852

ABSTRACT

Retinoid X receptors (RXRα, ß, and γ) are essential members of the nuclear receptor (NR) superfamily of ligand-dependent transcriptional regulators that bind DNA response elements and control the expression of large gene networks. As obligate heterodimerization partners of many NRs, RXRs are involved in a variety of pathophysiological processes. However, despite this central role in NR signaling, there is still no consensus regarding the precise biological functions of RXRs and the putative role of the endogenous ligands (rexinoids) previously proposed for these receptors. Based on available crystal structures, we introduced a series of amino acid substitutions into the ligand-binding pocket of all three RXR subtypes in order to alter their binding properties. Subsequent characterization using a battery of cell-based and in vitro assays led to the identification of a double mutation abolishing the binding of any ligand while keeping the other receptor functions intact and a triple mutation that selectively impairs interaction with natural rexinoids but not with some synthetic ligands. We also report crystal structures that help understand the specific ligand-binding capabilities of both variants. These RXR variants, either fully disabled for ligand binding or retaining the property of being activated by synthetic compounds, represent unique tools that could be used in future studies to probe the presence of active endogenous rexinoids in tissues/organs and to investigate their role in vivo. Last, we provide data suggesting a possible involvement of fatty acids in the weak interaction of RXRs with corepressors.


Subject(s)
Receptors, Cytoplasmic and Nuclear , Signal Transduction , Gene Expression Regulation , Ligands , Receptors, Cytoplasmic and Nuclear/metabolism , Retinoid X Receptors/chemistry , Retinoid X Receptors/genetics , Retinoid X Receptors/metabolism
7.
J Med Chem ; 65(2): 1552-1566, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34958586

ABSTRACT

Dabrafenib is an anticancer drug currently used in the clinics, alone or in combination. However, dabrafenib was recently shown to potently activate the human nuclear receptor pregnane X receptor (PXR). PXR activation increases the clearance of various chemicals and drugs, including dabrafenib itself. It may also enhance cell proliferation and tumor aggressiveness. Therefore, there is a need for rational design of a potent protein kinase B-Raf inhibitor devoid of binding to the secondary target PXR and resisting rapid metabolism. By determining the crystal structure of dabrafenib bound to PXR and analyzing its mode of binding to both PXR and its primary target, B-Raf-V600E, we were able to derive new compounds with nanomolar activity against B-Raf and no detectable affinity for PXR. The crystal structure of B-Raf in complex with our lead compound revealed a subdomain swapping of the activation loop with potentially important functional implications for a prolonged inhibition of B-Raf-V600E.


Subject(s)
Cell Proliferation , Drug Design , Imidazoles/pharmacology , Melanoma/drug therapy , Oximes/pharmacology , Pregnane X Receptor/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Crystallography, X-Ray , Humans , Imidazoles/chemistry , Melanoma/pathology , Molecular Docking Simulation , Oximes/chemistry , Protein Binding , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
8.
Environ Sci Technol ; 55(24): 16489-16501, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34843233

ABSTRACT

Endocrine disrupting chemicals (EDCs) are able to deregulate the hormone system, notably through interactions with nuclear receptors (NRs). The mechanisms of action and biological effects of many EDCs have mainly been tested on human and mouse but other species such as zebrafish and xenopus are increasingly used as a model to study the effects of EDCs. Among NRs, peroxisome proliferator-activated receptor γ (PPARγ) is a main target of EDCs, for which most experimental data have been obtained from human and mouse models. To assess interspecies differences, we tested known human PPARγ ligands on reporter cell lines expressing either human, mouse, zebrafish, or xenopus PPARγ. Using these cell lines, we were able to highlight major interspecies differences. Known hPPARγ pharmaceutical ligands modulated hPPARγ and mPPARγ activities in a similar manner, while xPPARγ was less responsive and zfPPARγ was not modulated at all by these compounds. On the contrary, human liver X receptor (hLXR) ligands GW 3965 and WAY-252623 were only active on zfPPARγ. Among environmental compounds, several molecules activated the PPARγ of the four species similarly, e.g., phthalates (MEHP), perfluorinated compounds (PFOA, PFOS), and halogenated derivatives of BPA (TBBPA, TCBPA), but some of them like diclofenac and the organophosphorus compounds tri-o-tolyl phosphate and triphenyl phosphate were most active on zfPPARγ. This study confirms or shows for the first time the h, m, x, and zfPPARγ activities of several chemicals and demonstrates the importance of the use of species-specific models to study endocrine and metabolism disruption by environmental chemicals.


Subject(s)
Endocrine Disruptors , Pharmaceutical Preparations , Animals , Ligands , Mice , PPAR gamma , Zebrafish
9.
BMC Biol ; 19(1): 248, 2021 11 20.
Article in English | MEDLINE | ID: mdl-34801011

ABSTRACT

BACKGROUND: Lipid species are accurately distributed in the eukaryotic cell so that organelle and plasma membranes have an adequate lipid composition to support numerous cellular functions. In the plasma membrane, a precise regulation of the level of lipids such as phosphatidylserine, PI(4)P, and PI(4,5)P2, is critical for maintaining the signaling competence of the cell. Several lipid transfer proteins of the ORP/Osh family contribute to this fine-tuning by delivering PS, synthesized in the endoplasmic reticulum, to the plasma membrane in exchange for PI(4)P. To get insights into the role of these PS/PI(4)P exchangers in regulating plasma membrane features, we question how they selectively recognize and transfer lipid ligands with different acyl chains, whether these proteins exchange PS exclusively for PI(4)P or additionally for PI(4,5)P2, and how sterol abundance in the plasma membrane impacts their activity. RESULTS: We measured in vitro how the yeast Osh6p and human ORP8 transported PS and PI(4)P subspecies of diverse length and unsaturation degree between membranes by fluorescence-based assays. We established that the exchange activity of Osh6p and ORP8 strongly depends on whether these ligands are saturated or not, and is high with representative cellular PS and PI(4)P subspecies. Unexpectedly, we found that the speed at which these proteins individually transfer lipid ligands between membranes is inversely related to their affinity for them and that high-affinity ligands must be exchanged to be transferred more rapidly. Next we determined that Osh6p and ORP8 cannot use PI(4,5)P2 for exchange processes, because it is a low-affinity ligand, and do not transfer more PS into sterol-rich membranes. CONCLUSIONS: Our study provides new insights into PS/PI(4)P exchangers by indicating the degree to which they can regulate the acyl chain composition of the PM, and how they control PM phosphoinositide levels. Moreover, we establish general rules on how the activity of lipid transfer proteins relates to their affinity for ligands.


Subject(s)
Phosphatidylserines , Saccharomyces cerevisiae , Cell Membrane , Endoplasmic Reticulum , Humans , Ligands , Sterols
10.
Essays Biochem ; 65(6): 887-899, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34296739

ABSTRACT

Retinoids are a family of compounds that include both vitamin A (all-trans retinol) and its naturally occurring metabolites such as retinoic acids (e.g. all-trans retinoic acid) as well as synthetic analogs. They are critically involved in the regulation of a wide variety of essential biological processes, such as embryogenesis and organogenesis, apoptosis, reproduction, vision, and the growth and differentiation of normal and neoplastic cells in vertebrates. The ability of these small molecules to control the expression of several hundred genes through binding to nuclear ligand-dependent transcription factors accounts for most of their functions. Three retinoic acid receptor (RARα,ß,γ) and three retinoid X receptor (RXRα,ß,γ) subtypes form a variety of RXR-RAR heterodimers that have been shown to mediate the pleiotropic effects of retinoids through the recruitment of high-molecular weight co-regulatory complexes to response-element DNA sequences found in the promoter region of their target genes. Hence, heterodimeric retinoid receptors are multidomain entities that respond to various incoming signals, such as ligand and DNA binding, by allosteric structural alterations which are the basis of further signal propagation. Here, we provide an overview of the current state of knowledge with regard to the structural mechanisms by which retinoids and DNA response elements act as allosteric effectors that may combine to finely tune RXR-RAR heterodimers activity.


Subject(s)
Receptors, Retinoic Acid , Retinoids , Animals , DNA , Ligands , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Retinoid X Receptors/genetics , Retinoids/metabolism , Retinoids/pharmacology
11.
Front Endocrinol (Lausanne) ; 12: 665521, 2021.
Article in English | MEDLINE | ID: mdl-34084152

ABSTRACT

The nuclear receptor pregnane X receptor (PXR) is a ligand-dependent transcription factor that regulates genes involved in xenobiotic metabolism in mammals. Many studies suggest that PXR may play a similar role in fish. The interaction of human PXR (hPXR) with a variety of structurally diverse endogenous and exogenous chemicals is well described. In contrast, little is known about the zebrafish PXR (zfPXR). In order to compare the effects of these chemicals on the PXR of these two species, we established reporter cell lines expressing either hPXR or zfPXR. Using these cellular models, we tested the hPXR and zfPXR activity of various steroids and pesticides. We provide evidence that steroids were generally stronger activators of zfPXR while pesticides were more potent on hPXR. In addition, some chemicals (econazole nitrate, mifepristone, cypermethrin) showed an antagonist effect on zfPXR, whereas no antagonist chemical has been identified for hPXR. These results confirm significant differences in the ability of chemicals to modulate zfPXR in comparison to hPXR and point out that zfPXR assays should be used instead of hPXR assays for evaluating the potential risks of chemicals on aquatic species.


Subject(s)
Biological Assay/methods , Gene Expression Regulation/drug effects , Genes, Reporter , Pesticides/pharmacology , Pregnane X Receptor/metabolism , Steroids/pharmacology , Animals , Humans , In Vitro Techniques , Pregnane X Receptor/genetics , Zebrafish
12.
J Mol Biol ; 433(9): 166899, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33647291

ABSTRACT

Retinoic acid receptors (RARs) and retinoid X receptors (RXRs) form heterodimers that activate target gene transcription by recruiting co-activator complexes in response to ligand binding. The nuclear receptor (NR) co-activator TIF2 mediates this recruitment by interacting with the ligand-binding domain (LBD) of NRs trough the nuclear receptor interaction domain (TIF2NRID) containing three highly conserved α-helical LxxLL motifs (NR-boxes). The precise binding mode of this domain to RXR/RAR is not clear due to the disordered nature of TIF2. Here we present the structural characterization of TIF2NRID by integrating several experimental (NMR, SAXS, Far-UV CD, SEC-MALS) and computational data. Collectively, the data are in agreement with a largely disordered protein with partially structured regions, including the NR-boxes and their flanking regions, which are evolutionary conserved. NMR and X-ray crystallographic data on TIF2NRID in complex with RXR/RAR reveal a multisite binding of the three NR-boxes as well as an active role of their flanking regions in the interaction.


Subject(s)
Nuclear Receptor Coactivator 2/chemistry , Nuclear Receptor Coactivator 2/metabolism , Receptors, Retinoic Acid/chemistry , Receptors, Retinoic Acid/metabolism , Retinoid X Receptors/chemistry , Retinoid X Receptors/metabolism , Amino Acid Sequence , Animals , Binding Sites , Crystallography, X-Ray , Fluorescence Polarization , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Ligands , Mice , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Multimerization , Protein Structure, Secondary
13.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33361153

ABSTRACT

Humans are chronically exposed to mixtures of xenobiotics referred to as endocrine-disrupting chemicals (EDCs). A vast body of literature links exposure to these chemicals with increased incidences of reproductive, metabolic, or neurological disorders. Moreover, recent data demonstrate that, when used in combination, chemicals have outcomes that cannot be predicted from their individual behavior. In its heterodimeric form with the retinoid X receptor (RXR), the pregnane X receptor (PXR) plays an essential role in controlling the mammalian xenobiotic response and mediates both beneficial and detrimental effects. Our previous work shed light on a mechanism by which a binary mixture of xenobiotics activates PXR in a synergistic fashion. Structural analysis revealed that mutual stabilization of the compounds within the ligand-binding pocket of PXR accounts for the enhancement of their binding affinity. In order to identify and characterize additional active mixtures, we combined a set of cell-based, biophysical, structural, and in vivo approaches. Our study reveals features that confirm the binding promiscuity of this receptor and its ability to accommodate bipartite ligands. We reveal previously unidentified binding mechanisms involving dynamic structural transitions and covalent coupling and report four binary mixtures eliciting graded synergistic activities. Last, we demonstrate that the robust activity obtained with two synergizing PXR ligands can be enhanced further in the presence of RXR environmental ligands. Our study reveals insights as to how low-dose EDC mixtures may alter physiology through interaction with RXR-PXR and potentially several other nuclear receptor heterodimers.


Subject(s)
Pregnane X Receptor/chemistry , Retinoid X Receptors/chemistry , Xenobiotics , Animals , Cell Line , Crystallography, X-Ray , Dimerization , Fluorescence Polarization , Gene Expression Regulation , Humans , Ligands , Luciferases/genetics , Luciferases/metabolism , Models, Chemical , Pregnane X Receptor/metabolism , Retinoid X Receptors/metabolism , Xenobiotics/chemistry , Xenobiotics/metabolism , Xenobiotics/pharmacology , Xenopus
14.
Prog Mol Biol Transl Sci ; 174: 105-155, 2020.
Article in English | MEDLINE | ID: mdl-32828464

ABSTRACT

G protein-coupled receptors (GPCRs) and Nuclear Receptors (NRs) are two signaling machineries that are involved in major physiological processes and, as a consequence, in a substantial number of diseases. Therefore, they actually represent two major targets for drugs with potential applications in almost all public health issues. Full exploitation of these targets for therapeutic purposes nevertheless requires opening original avenues in drug design, and this in turn implies a better understanding of the molecular mechanisms underlying their functioning. However, full comprehension of how these complex systems function and how they are deregulated in a physiopathological context is obscured by the fact that these proteins include a substantial number of disordered regions that are central to their mechanism of action but whose structural and functional properties are still largely unexplored. In this chapter, we describe how these intrinsically disordered regions (IDR) or proteins (IDP) intervene, control and finely modulate the thermodynamics of complexes involved in GPCR and NR regulation, which in turn triggers a multitude of cascade of events that are exquisitely orchestrated to ultimately control the biological output.


Subject(s)
Intrinsically Disordered Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Amino Acid Sequence , Animals , Humans , Intrinsically Disordered Proteins/chemistry , Models, Molecular , Protein Processing, Post-Translational , Receptors, G-Protein-Coupled/chemistry
15.
Environ Sci Technol ; 54(15): 9510-9518, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32650635

ABSTRACT

The environmental risk of natural and synthetic ligands of the nuclear progesterone receptor (nPR) has been pointed out, however there is still a lack of mechanistic information regarding their ability to interact with nuclear PR in aquatic species. To identify possible interspecies differences, we assessed in vitro the ability of manifold progestins to transactivate zebrafish (zf) and human (h) PRs, using two established reporter cell lines, U2OS-zfPR and HELN-hPR, respectively. Reference ligands highlighted some differences between the two receptors. The reference human agonist ligands promegestone and progesterone induced luciferase activity in both cell lines in a concentration-dependent manner, whereas the natural zebrafish progestin 17α,20ß-dihydroxy-4-pregnen-3-one activated zfPR but not hPR. The potent human PR antagonist mifepristone (RU486) blocked PR-induced luciferase in both cell models but with different potencies. In addition, a set of 22 synthetic progestins were screened on the two cell lines. Interestingly, all of the tested compounds activated hPR in the HELN-hPR cell line, whereas the majority of them acted as zfPR antagonists in U2OS-zfPR. Such zfPR-specific response was further confirmed in zebrafish liver cells. This study provides novel information regarding the activity of a large set of progestins on human and zebrafish PR and highlights major interspecies differences in their activity, which may result in differential effects of progestins between fish and humans.


Subject(s)
Progesterone , Progestins , Animals , Humans , Mifepristone/pharmacology , Receptors, Progesterone , Zebrafish
16.
J Cell Mol Med ; 24(13): 7660-7669, 2020 07.
Article in English | MEDLINE | ID: mdl-32519441

ABSTRACT

The transcription factor peroxisome proliferator-activated receptor gamma (PPARG) is essential for placental development, and alterations in its expression and/or activity are associated with human placental pathologies such as pre-eclampsia or IUGR. However, the molecular regulation of PPARG in cytotrophoblast differentiation and in the underlying mesenchyme remains poorly understood. Our main goal was to study the impact of mutations in the ligand-binding domain (LBD) of the PPARG gene on cytotrophoblast fusion (PPARGE352Q ) and on fibroblast cell migration (PPARGR262G /PPARGL319X ). Our results showed that, compared to cells with reconstituted PPARGWT , transfection with PPARGE352Q led to significantly lower PPARG activity and lower restoration of trophoblast fusion. Likewise, compared to PPARGWT fibroblasts, PPARGR262G /PPARGL319X fibroblasts demonstrated significantly inhibited cell migration. In conclusion, we report that single missense or nonsense mutations in the LBD of PPARG significantly inhibit cell fusion and migration processes.


Subject(s)
Cell Movement , Fibroblasts/pathology , Lipodystrophy, Familial Partial/genetics , Mutation/genetics , PPAR gamma/chemistry , PPAR gamma/genetics , Trophoblasts/pathology , Animals , Cell Fusion , Fibroblasts/metabolism , Humans , Ligands , Lipodystrophy, Familial Partial/pathology , Mice , Models, Molecular , NIH 3T3 Cells , PPAR gamma/metabolism , Protein Domains , Trophoblasts/metabolism
17.
Cells ; 9(6)2020 06 16.
Article in English | MEDLINE | ID: mdl-32560058

ABSTRACT

Prostate cancer is the most commonly diagnosed malignancy in men. Its growth mainly relies on the activity of the androgen receptor (AR), justifying the use of androgen deprivation therapy as a gold standard treatment for the metastatic disease. Inhibition of the androgen axis using second generation antagonists has improved patients' survival, but is systematically confronted to resistance mechanisms, leading to a median survival that does not exceed 5 years. Counteracting this resistance has been the object of a large number of investigations, with a particular emphasis towards the identification of new AR inhibitors, whether they antagonize the receptor by a competitive or a non-competitive binding. To this end, many high content screens have been performed, to identify new non-steroidal AR antagonists, using a variety of approaches, but reported somewhat controversial results, depending on the approach and on the cell model that was used for screening. In our study, we used the U2OS osteosarcoma cells stably transfected with AR or ARv7 and a luciferase reporter as a previously validated model to screen the Prestwick Phytochemical library. The results of our screen identified ellipticine, harmol, and harmine hydrochloride as confirmed hits. Surprisingly, we could demonstrate that harmol hydrochloride, previously identified as a non-competitive inhibitor of AR or a weak inhibitor of androgen signaling, was actually a competitive antagonist of AR, which inhibits the growth of VCaP prostate cancer line, at concentrations for which it did not affect the growth of the AR negative DU145 and PC3 cells. Interestingly, we also report for the first time that harmol hydrochloride was selective for AR, as it could not alter the activity of other nuclear receptors, such as the glucocorticoid receptor (GR), the progesterone receptor (PR), or the mineralocorticoid receptor (MR). Additionally, we demonstrate that, conversely to enzalutamide, harmol hydrochloride did not show any agonistic activity towards the pregnane X receptor (PXR), a master regulator of drug metabolism. Together, our results shed light on the importance of the cellular context for the screening of new AR antagonists. They further indicate that some of the potential hits that were previously identified may have been overlooked.


Subject(s)
Androgen Antagonists/pharmacology , Drug Resistance, Neoplasm/drug effects , Prostatic Neoplasms/drug therapy , Receptors, Androgen/metabolism , Androgen Receptor Antagonists/metabolism , Androgen Receptor Antagonists/pharmacology , Cell Proliferation/drug effects , Harmine , Humans , Male , Prostatic Neoplasms/pathology
18.
Int J Mol Sci ; 21(10)2020 May 14.
Article in English | MEDLINE | ID: mdl-32423144

ABSTRACT

The purpose of this project report is to introduce the European "GOLIATH" project, a new research project which addresses one of the most urgent regulatory needs in the testing of endocrine-disrupting chemicals (EDCs), namely the lack of methods for testing EDCs that disrupt metabolism and metabolic functions. These chemicals collectively referred to as "metabolism disrupting compounds" (MDCs) are natural and anthropogenic chemicals that can promote metabolic changes that can ultimately result in obesity, diabetes, and/or fatty liver in humans. This project report introduces the main approaches of the project and provides a focused review of the evidence of metabolic disruption for selected EDCs. GOLIATH will generate the world's first integrated approach to testing and assessment (IATA) specifically tailored to MDCs. GOLIATH will focus on the main cellular targets of metabolic disruption-hepatocytes, pancreatic endocrine cells, myocytes and adipocytes-and using an adverse outcome pathway (AOP) framework will provide key information on MDC-related mode of action by incorporating multi-omic analyses and translating results from in silico, in vitro, and in vivo models and assays to adverse metabolic health outcomes in humans at real-life exposures. Given the importance of international acceptance of the developed test methods for regulatory use, GOLIATH will link with ongoing initiatives of the Organisation for Economic Development (OECD) for test method (pre-)validation, IATA, and AOP development.


Subject(s)
Diabetes Mellitus/epidemiology , Endocrine Disruptors/adverse effects , Fatty Liver/epidemiology , Obesity/epidemiology , Adipocytes/drug effects , Adipocytes/pathology , Diabetes Mellitus/chemically induced , Diabetes Mellitus/prevention & control , Fatty Liver/chemically induced , Fatty Liver/prevention & control , Humans , Metabolic Networks and Pathways/drug effects , Obesity/chemically induced , Obesity/prevention & control , Risk Assessment
19.
Methods Enzymol ; 637: 175-207, 2020.
Article in English | MEDLINE | ID: mdl-32359645

ABSTRACT

The three retinoic acid receptor subtypes (RARα, RARß and RARγ) act as ligand-inducible transcription factors binding to DNA regulatory elements in the promoter regions of target genes by forming heterodimers with the retinoid X receptors (RXRα, RXRß and RXRγ). They act as ligand-dependent transcription factors that regulate a large variety of genes involved in cell growth, differentiation, survival and death. The (patho)physiological functions of RAR-RXR heterodimers rely on a dynamic sequence of protein-protein interactions, many of which being modulated by natural (retinoic acid) or synthetic ligands. Direct protein-protein interactions include heterodimerization between RARs and RXRs, recruitment (and release) of transcriptional coactivators and corepressors, cross-talk with other transcription factors, including nuclear receptors, or transient association with many enzymes involved in post-translational modifications to cite the most prominent ones. This chapter describes structural, biochemical, biophysical and cell-based assays to monitor protein-protein interactions relevant to the retinoic acid signaling pathways with a focus on those for which a structural description has been provided.


Subject(s)
Signal Transduction , Tretinoin , Gene Expression Regulation , Ligands , Retinoid X Receptors/genetics , Retinoid X Receptors/metabolism
20.
Thyroid ; 30(8): 1217-1221, 2020 08.
Article in English | MEDLINE | ID: mdl-32204686

ABSTRACT

Resistance to thyroid hormone alpha (RTHα) is a rare and under-recognized genetic disease caused by mutations of THRA, the gene encoding thyroid hormone receptor α1 (TRα1). We report here two novel THRA missense mutations (M259T, T273A) in patients with RTHα. We combined biochemical and cellular assays with in silico modeling to assess the capacity of mutant TRα1 to bind triiodothyronine (T3), to heterodimerize with RXR, to interact with transcriptional coregulators, and to transduce a T3 transcriptional response. M259T, and to a lower extent T273A, reduces the affinity of TRα1 for T3. Their negative influence is only reverted by large excess of T3. The severity of the two novel RTHα cases originates from a reduction in the binding affinity of TRα1 mutants to T3 and thus correlates with the incapacity of corepressors to dissociate from TRα1 mutants in the presence of T3.


Subject(s)
Mutation, Missense , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormone Resistance Syndrome/genetics , Child, Preschool , Computer Simulation , Dimerization , Female , Heterozygote , Humans , Infant , Infant, Newborn , Infant, Premature , Ligands , Mutation , Phenotype , Thyroid Hormone Resistance Syndrome/blood , Thyroid Hormones , Thyroxine/metabolism , Transcriptional Activation , Transfection , Triiodothyronine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...