Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Environ Interact ; 5(3): e10144, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38784123

ABSTRACT

In the tropics, more precisely in equatorial dense rainforest, xylogenesis is driven by a little distinct climatological seasonality, and many tropical trees do not show clear growth rings. This makes retrospective analyses and modeling of future tree performance difficult. This research investigates the presence, the distinctness, and the periodicity of growth ring for dominant tree species in two semi-deciduous rainforests, which contrast in terms of precipitation dynamics. Eighteen tree species common to both forests were investigated. We used the cambial marking technique and then verified the presence and periodicity of growth-ring boundaries in the wood produced between pinning and collection by microscopic and macroscopic observation. The study showed that all eighteen species can form visible growth rings in both sites. However, the periodicity of ring formation varied significantly within and between species, and within sites. Trees from the site with clearly defined dry season had a higher likelihood to form periodical growth rings compared to those from the site where rainfall seasonality is less pronounced. The distinctness of the formed rings however did not show a site dependency. Periodical growth-ring formation was more likely in fast-growing trees. Furthermore, improvements can be made by a detailed study of the cambial activity through microcores taken at high temporal resolution, to get insight on the phenology of the lateral meristem.

2.
Glob Chang Biol ; 30(1): e17154, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273529

ABSTRACT

A large share of the global forest restoration potential is situated in artificial 'unstable' mesic African savannas, which could be restored to higher carbon and biodiversity states if protected from human-induced burning. However, uncertainty on recovery rates in protected unstable savannas impedes science-informed forest restoration initiatives. Here, we quantify the forest restoration success of anthropogenic fire exclusion within an 88-ha mesic artificial savanna patch in the Kongo Central province of the Democratic Republic of the Congo (DR Congo). We found that aboveground carbon recovery after 17 years was on average 11.40 ± 0.85 Mg C ha-1 . Using a statistical model, we found that aboveground carbon stocks take 112 ± 3 years to recover to 90% of aboveground carbon stocks in old-growth forests. Assuming that this recovery trajectory would be representative for all unstable savannas, we estimate that they could have a total carbon uptake potential of 12.13 ± 2.25 Gt C by 2100 across DR Congo, Congo and Angola. Species richness recovered to 33.17% after 17 years, and we predicted a 90% recovery at 54 ± 2 years. In contrast, we predicted that species composition would recover to 90% of old-growth forest composition only after 124 ± 3 years. We conclude that the relatively simple and cost-efficient measure of fire exclusion in artificial savannas is an effective nature-based solution to climate change and biodiversity loss. However, more long-term and in situ monitoring efforts are needed to quantify variation in long-term carbon and diversity recovery pathways. Particular uncertainties are spatial variability in socio-economics and growing conditions as well as the effects of projected climate change.


Subject(s)
Carbon , Grassland , Humans , Democratic Republic of the Congo , Carbon/metabolism , Forests , Biodiversity , Trees/metabolism , Ecosystem
3.
Nature ; 625(7996): 728-734, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38200314

ABSTRACT

Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.


Subject(s)
Forests , Trees , Tropical Climate , Biodiversity , Trees/anatomy & histology , Trees/classification , Trees/growth & development , Africa , Asia, Southeastern
4.
Ann Bot ; 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37409979

ABSTRACT

BACKGROUND AND AIMS: Heartwood plays an important role in maintaining the structural integrity of trees. While, its formation has long be thought to be solely driven by internal ageing processes, more recent hypotheses suggest that heartwood formation acts as a regulator of the tree water balance by modulating sapwood quantities. Testing both hypotheses would shed light on the potential ecophysiological nature of heartwood formation, a very common process in trees. METHODS: We measured heartwood and sapwood quantities, xylem conduits and growth ring width and number on 406 stems of Pericopsis elata with ages ranging from 2 to 237 years. A subset of 17 trees with similar ages but varying growth rate were sampled in a shaded (slower growth) and sun-exposed (faster growth) site. We used regression analysis and structural equations modelling to investigate the dynamics and drivers of heartwood formation. KEY RESULTS: We found a positive effect of growth rate on the probability of heartwood occurrence, suggesting an earlier heartwood onset in faster-growing stems. After this onset age, heartwood area increases with stem diameter and age. Despite the similar heartwood production per unit stem diameter increment, shaded trees produce heartwood faster than sun-exposed trees. Tree age and hydraulics showed similar direct effects on heartwood and sapwood area of sun-exposed trees, suggesting their mutual role in driving the heartwood dynamics of sun-exposed trees. However, for shaded trees, only tree hydraulics showed a direct effect, suggesting its prominent role over age in driving the heartwood dynamics in limited growing conditions. The positive relationship between growth rate and maximum stomatal conductance supports this conclusion. CONCLUSIONS: Heartwood area increases as the tree ages but at a slower rate in trees where water demand is balanced by a sufficient water supply. Our findings suggest that heartwood formation is not only a structural but also a functional process.

5.
Database (Oxford) ; 20232023 05 13.
Article in English | MEDLINE | ID: mdl-37178209

ABSTRACT

Wood identification is a key step in the enforcement of laws and regulations aimed at combatting illegal timber trade. Robust wood identification tools, capable of distinguishing a large number of timbers, depend on a solid database of reference material. Reference material for wood identification is typically curated in botanical collections dedicated to wood consisting of samples of secondary xylem of lignified plants. Specimens from the Tervuren Wood Collection, one of the large institutional wood collections around the world, are used as a source of tree species data with potential application as timber. Here, we present SmartWoodID, a database of high-resolution optical scans of the end-grain surfaces enriched with expert wood anatomical descriptions of macroscopic features. These can serve as annotated training data to develop interactive identification keys and artificial intelligence for computer vision-based wood identification. The first edition of the database consists of images of 1190 taxa, with a focus on potential timber species from the Democratic Republic of the Congo with at least four different specimens per species included. Database URL https://hdl.handle.net/20.500.12624/SmartWoodID_first_edition.


Subject(s)
Artificial Intelligence , Wood , Species Specificity , Trees
6.
Ecol Evol ; 11(24): 18691-18707, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35003702

ABSTRACT

Most Central African rainforests are characterized by a remarkable abundance of light-demanding canopy species: long-lived pioneers (LLP) and non-pioneer light demanders (NPLD). A popular explanation is that these forests are still recovering from intense slash-and-burn farming activities, which abruptly ended in the 19th century. This "human disturbance" hypothesis has never been tested against spatial distribution patterns of these light demanders. Here, we focus on the 28 most abundant LLP and NPLD from 250 one-ha plots distributed along eight parallel transects (~50 km) in the Yangambi forest. Four species of short-lived pioneers (SLP) and a single abundant shade-tolerant species (Gilbertiodendron dewevrei) were used as reference because they are known to be strongly aggregated in recently disturbed patches (SLP) or along watercourses (G. dewevrei). Results show that SLP species are strongly aggregated with clear spatial autocorrelation of their diameter. This confirms that they colonized the patch following a one-time disturbance event. In contrast, LLP and NPLD species have random or weakly aggregated distribution, mostly without spatial autocorrelation of their diameter. This does not unambiguously confirm the "human disturbance" hypothesis. Alternatively, their abundance might be explained by their deciduousness, which gave them a competitive advantage during long-term drying of the late Holocene. Additionally, a canonical correspondence analysis showed that the observed LLP and NPLD distributions are not explained by environmental variables, strongly contrasting with the results for the reference species G. dewevrei, which is clearly aggregated along watercourses. We conclude that the abundance of LLP and NPLD species in Yangambi cannot be unambiguously attributed to past human disturbances or environmental variables. An alternative explanation is that present-day forest composition is a result of adaptation to late-Holocene drying. However, results are inconclusive and additional data are needed to confirm this alternative hypothesis.

7.
Nat Plants ; 5(2): 133-140, 2019 02.
Article in English | MEDLINE | ID: mdl-30664730

ABSTRACT

Quantifying carbon dynamics in forests is critical for understanding their role in long-term climate regulation1-4. Yet little is known about tree longevity in tropical forests3,5-8, a factor that is vital for estimating carbon persistence3,4. Here we calculate mean carbon age (the period that carbon is fixed in trees7) in different strata of African tropical forests using (1) growth-ring records with a unique timestamp accurately demarcating 66 years of growth in one site and (2) measurements of diameter increments from the African Tropical Rainforest Observation Network (23 sites). We find that in spite of their much smaller size, in understory trees mean carbon age (74 years) is greater than in sub-canopy (54 years) and canopy (57 years) trees and similar to carbon age in emergent trees (66 years). The remarkable carbon longevity in the understory results from slow and aperiodic growth as an adaptation to limited resource availability9-11. Our analysis also reveals that while the understory represents a small share (11%) of the carbon stock12,13, it contributes disproportionally to the forest carbon sink (20%). We conclude that accounting for the diversity of carbon age and carbon sequestration among different forest strata is critical for effective conservation management14-16 and for accurate modelling of carbon cycling4.


Subject(s)
Carbon Sequestration , Carbon/analysis , Forests , Trees/physiology , Carbon Cycle , Democratic Republic of the Congo , Time Factors , Trees/growth & development , Tropical Climate
8.
BMC Evol Biol ; 16(1): 259, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27903256

ABSTRACT

BACKGROUND: Species delimitation in closely related plant taxa can be challenging because (i) reproductive barriers are not always congruent with morphological differentiation, (ii) use of plastid sequences might lead to misinterpretation, (iii) rare species might not be sampled. We revisited molecular-based species delimitation in the African genus Milicia, currently divided into M. regia (West Africa) and M. excelsa (from West to East Africa). We used 435 samples collected in West, Central and East Africa. We genotyped SNP and SSR loci to identify genetic clusters, and sequenced two plastid regions (psbA-trnH, trnC-ycf6) and a nuclear gene (At103) to confirm species' divergence and compare species delimitation methods. We also examined whether ecological niche differentiation was congruent with sampled genetic structure. RESULTS: West African M. regia, West African and East African M. excelsa samples constituted three well distinct genetic clusters according to SNPs and SSRs. In Central Africa, two genetic clusters were consistently inferred by both types of markers, while a few scattered samples, sympatric with the preceding clusters but exhibiting leaf traits of M. regia, were grouped with the West African M. regia cluster based on SNPs or formed a distinct cluster based on SSRs. SSR results were confirmed by sequence data from the nuclear region At103 which revealed three distinct 'Fields For Recombination' corresponding to (i) West African M. regia, (ii) Central African samples with leaf traits of M. regia, and (iii) all M. excelsa samples. None of the plastid sequences provide indication of distinct clades of the three species-like units. Niche modelling techniques yielded a significant correlation between niche overlap and genetic distance. CONCLUSIONS: Our genetic data suggest that three species of Milicia could be recognized. It is surprising that the occurrence of two species in Central Africa was not reported for this well-known timber tree. Globally, our work highlights the importance of collecting samples in a systematic way and the need for combining different nuclear markers when dealing with species complexes. Recognizing cryptic species is particularly crucial for economically exploited species because some hidden taxa might actually be endangered as they are merged with more abundant species.


Subject(s)
DNA, Plant , Microsatellite Repeats , Polymorphism, Single Nucleotide , Rosales/genetics , Trees/genetics , Africa, Central , Africa, Eastern , Africa, Western , Genetic Structures , Genotype , Multigene Family , Phylogeny , Rosales/classification , Sequence Analysis, DNA , Species Specificity , Sympatry , Trees/classification
9.
Am J Bot ; 98(10): e268-70, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21926310

ABSTRACT

PREMISE OF THE STUDY: Microsatellite loci were developed in the endangered Pericopsis elata using a combination of low-cost procedures. METHODS AND RESULTS: Microsatellite isolation was performed simultaneously on three distinct species through a newly available procedure that associates multiplex microsatellite enrichment and next-generation sequencing, allowing the rapid and low-cost development of microsatellite-enriched libraries through the use of a 1/32nd GS-FLX plate. Genotyping using M13-like labeling in multiplexed reactions allowed additional cost savings. From 72 primers selected for initial screening, 21 positively amplified P. elata, and 11 showed polymorphism with two to 11 alleles per locus and a mean value of 5.4 alleles per locus. CONCLUSIONS: These microsatellite loci will be useful to further investigate the level of genetic variation within and between natural populations of P. elata in Africa.


Subject(s)
Fabaceae/genetics , Genetic Loci/genetics , Genetic Techniques/economics , Microsatellite Repeats/genetics , Alleles , Cost-Benefit Analysis , Genetics, Population , Heterozygote , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...