Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Genet ; 79(2): 169-75, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20507345

ABSTRACT

An imbalance of imprinted gene expression within 11p15.5 is observed in Beckwith-Wiedemann syndrome (BWS), as well as in a variety of placental abnormalities including complete hydatidiform mole (CHM), placental mesenchymal dysplasia (PMD) and triploidy. To facilitate the diagnosis of epigenetic errors and chromosomal imbalance of 11p15.5, we validated a pyrosequencing assay to measure methylation at KvDMR1 using blood samples from 13 BWS cases, 8 of which showed reduced methylation as compared to control blood. An imbalance between maternal and paternal genomes as is found in triploidy, CHM or PMD was also associated with altered KvDMR1 methylation. A reciprocal pattern of methylation was obtained in the triploid cases by assaying the proximal 11p15.5 ICR associated with H19. To distinguish chromosome 11 specific alterations from whole genome imbalance, other imprinted differentially methylated regions (DMRs) can be utilized. Thus, pyrosequencing assays for DMRs associated with SGCE, SNRPN, and MEST were also compared for their utility in diagnosing parental imbalance in placental samples. While each of these assays could successfully distinguish parental origin of triploidy, SGCE showed the clearest separation between groups. The combined use of a chromosome 11p15.5 assay (e.g. KvDMR1 or H19-ICR) and non-chromosome 11 assay (e.g. SGCE) provides a potentially valuable diagnostic tool in the rapid screening of methylation errors in placental disorders. These results also show the maintenance of imprinting status at these loci in the human placenta, even in the presence of abnormal pathology.


Subject(s)
DNA Methylation , Fetal Diseases/diagnosis , Genomic Imprinting , Molecular Diagnostic Techniques/methods , Placenta Diseases/diagnosis , Chromosomes, Human, Pair 11/genetics , Female , Humans , Potassium Channels, Voltage-Gated/genetics , Pregnancy , Sequence Analysis, DNA/methods
2.
Placenta ; 31(3): 197-202, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20060582

ABSTRACT

UNLABELLED: Many genes exhibiting genomic imprinting, parent-of-origin differences in gene expression, are involved in regulating placental and fetal growth. The goal of the present study was to assess whether abnormal regulation of imprinted genes is associated with intrauterine growth restriction (IUGR) and/or preeclampsia (PET). METHODS: Genomic DNA was extracted from at least two whole villi samples from control (N=22), IUGR (N=13), PET (N=17), and PET+IUGR (N=21) placentas. Methylation was assessed using the Illumina GoldenGate Methylation Cancer Panel I array and Pyrosequencing and MS-SNuPE assays. RESULTS: The 11p15.5 ICR1 (associated with H19 and IGF2) methylation showed considerable intra-placental variability. Nonetheless, average methylation at this site was significantly decreased in normotensive IUGR placentas (p<0.001), but not in any other group. Methylation at ICR2 (KvDMR1; associated with CDKN1C and other maternally expressed 11p15.5 genes) was not significantly altered in any group and no significant changes in expression levels were observed in the genes controlled by this region. There were no significant methylation changes observed in any candidate imprinted gene evaluated by the Illumina array. LINE-1 methylation, a marker of whole genome methylation, was also similar in all groups. CONCLUSIONS: Reduced methylation of ICR1 is associated with normotensive IUGR but not IUGR associated with preeclampsia, suggesting a different etiology of IUGR in this group. A reduction in placental IGF2 could be an adaptive response to restrict fetal growth in the presence of abnormal placentation or a response to poor fetal growth itself.


Subject(s)
DNA Methylation , Fetal Growth Retardation/metabolism , Genomic Imprinting , Insulin-Like Growth Factor II/metabolism , Placenta/metabolism , Pre-Eclampsia/metabolism , RNA, Untranslated/metabolism , CpG Islands/genetics , Female , Fetal Growth Retardation/genetics , Humans , Infant, Newborn , Insulin-Like Growth Factor II/genetics , Pre-Eclampsia/genetics , Pregnancy , RNA, Long Noncoding , RNA, Untranslated/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL