Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Biomolecules ; 13(6)2023 06 05.
Article in English | MEDLINE | ID: mdl-37371523

ABSTRACT

Melatonin is a fascinating molecule that has captured the imagination of many scientists since its discovery in 1958. In recent times, the focus has changed from investigating its natural role as a transducer of biological time for physiological systems to hypothesized roles in virtually all clinical conditions. This goes along with the appearance of extensive literature claiming the (generally) positive benefits of high doses of melatonin in animal models and various clinical situations that would not be receptor-mediated. Based on the assumption that melatonin is safe, high doses have been administered to patients, including the elderly and children, in clinical trials. In this review, we critically review the corresponding literature, including the hypotheses that melatonin acts as a scavenger molecule, in particular in mitochondria, by trying not only to contextualize these interests but also by attempting to separate the wheat from the chaff (or the wishful thinking from the facts). We conclude that most claims remain hypotheses and that the experimental evidence used to promote them is limited and sometimes flawed. Our review will hopefully encourage clinical researchers to reflect on what melatonin can and cannot do and help move the field forward on a solid basis.


Subject(s)
Melatonin , Animals , Melatonin/pharmacology , Melatonin/therapeutic use , Mitochondria
2.
Sci Rep ; 9(1): 11829, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31413265

ABSTRACT

Most of over a thousand mitochondrial proteins are encoded by nuclear genes and must be imported from the cytosol. Little is known about the cytosolic events regulating mitochondrial protein import, partly due to the lack of appropriate tools for its assessment in living cells. We engineered an inducible biosensor for monitoring the main presequence-mediated import pathway with a quantitative, luminescence-based readout. This tool was used to explore the regulation of mitochondrial import by the PINK1 kinase-driven Parkin ubiquitin ligase, which is dysfunctional in autosomal recessive Parkinson's disease. We show that mitochondrial import was stimulated by Parkin, but not by disease-causing Parkin variants. This effect was dependent on Parkin activation by PINK1 and accompanied by an increase in the abundance of K11 ubiquitin chains on mitochondria and by ubiquitylation of subunits of the translocase of outer mitochondrial membrane. Mitochondrial import efficiency was abnormally low in cells from patients with PINK1- and PARK2-linked Parkinson's disease and was restored by phosphomimetic ubiquitin in cells with residual Parkin activity. Altogether, these findings uncover a role of ubiquitylation in mitochondrial import regulation and suggest that loss of this regulatory loop may underlie the pathophysiology of Parkinson's disease, providing novel opportunities for therapeutic intervention.


Subject(s)
Mitochondrial Proteins/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Biosensing Techniques , HEK293 Cells , Humans , Protein Transport
3.
Anal Biochem ; 477: 62-8, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25684110

ABSTRACT

Human hexokinase enzyme IV (EC 2.7.1.1) catalyzes the phosphorylation of glucose and regulates the level of glucose. This enzyme exhibits strong positive cooperativity due to an allosteric transition between an inactive form and a closed active form. This form can be stabilized by activators and, thus, can increase its turnover by a kinetic memory effect characterized by a slow decay to the inactive state. The structural details of this kinetic allostery are known. Several synthetic activators have been reported. We present a preliminary nuclear magnetic resonance (NMR) screening of a chemical library in search of molecules with some affinity for glucokinase (GK). The library, composed of eight molecules with known activity as well as molecules that display no interaction, has been tested using the FAXS (fluorine chemical shift anisotropy and exchange for screening) method, based on monitoring the R2 relaxation of the (19)F spin. To ensure a valid interaction measurement, the enzyme was placed in the presence of glucose and magnesium. The binding signal of one known fluorinated ligand was measured by determining the displacement of the known ligand. This simple measure of the (19)F signal intensity after an 80-ms spin echo correlates nicely with the EC50, opening a route for NMR screening of GK activators.


Subject(s)
Enzyme Activators/pharmacology , Glucokinase/metabolism , Magnetic Resonance Spectroscopy/methods , Drug Evaluation, Preclinical , Halogenation , Humans , Ligands
4.
Br J Pharmacol ; 171(19): 4425-39, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24913445

ABSTRACT

BACKGROUND AND PURPOSE: The neuropeptide 26RFa and its cognate receptor GPR103 are involved in the control of food intake and bone mineralization. Here, we have tested, experimentally, the predicted ligand-receptor interactions by site-directed mutagenesis of GPR103 and designed point-substituted 26RFa analogues. EXPERIMENTAL APPROACH: Using the X-ray structure of the ß2 -adrenoceptor, a 3-D molecular model of GPR103 has been built. The bioactive C-terminal octapeptide 26RFa(19-26) , KGGFSFRF-NH2 , was docked in this GPR103 model and the ligand-receptor complex was submitted to energy minimization. KEY RESULTS: In the most stable complex, the Phe-Arg-Phe-NH2 part was oriented inside the receptor cavity, whereas the N-terminal Lys residue remained outside. A strong intermolecular interaction was predicted between the Arg(25) residue of 26RFa and the Gln(125) residue located in the third transmembrane helix of GPR103. To confirm this interaction experimentally, we tested the ability of 26RFa and Arg-modified 26RFa analogues to activate the wild-type and the Q125A mutant receptors transiently expressed in CHO cells. 26RFa (10(-6) M) enhanced [Ca(2+) ]i in wild-type GPR103-transfected cells, but failed to increase [Ca(2+) ]i in Q125A mutant receptor-expressing cells. Moreover, asymmetric dimethylation of the side chain of arginine led to a 26RFa analogue, [ADMA(25) ]26RFa(20-26) , that was unable to activate the wild-type GPR103, but antagonized 26RFa-evoked [Ca(2+) ]i increase. CONCLUSION AND IMPLICATIONS: Altogether, these data provide strong evidence for a functional interaction between the Arg(25) residue of 26RFa and the Gln(125) residue of GPR103 upon ligand-receptor activation, which can be exploited for the rational design of potent GPR103 agonists and antagonists.


Subject(s)
Models, Molecular , Neuropeptides/metabolism , Receptors, G-Protein-Coupled , Amino Acid Sequence , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Oligopeptides/metabolism , Receptors, Adrenergic, beta-2/chemistry , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Sequence Alignment , Structure-Activity Relationship
5.
J Neuroendocrinol ; 26(3): 151-63, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24460899

ABSTRACT

The pineal gland secretes melatonin (MLT) that circulates in the blood and cerebrospinal fluid (CSF). We provide data to support the hypothesis that, in sheep and possibly in humans, only the CSF MLT, and not the blood MLT, can provide most of MLT to the cerebral tissue in high concentrations, particularly in the periventricular area. The MLT content of sheep brain, our chosen animal model, was found in significant concentration gradients oriented from the ventricle (close to the CSF) to the cerebral tissue, with concentrations varying by a factor of 1-125. The highest concentrations were observed close to the ventricle wall, whereas the lowest concentrations were furthest from the ventricles (407.0 ± 71.5 pg/ml compared to 84.7 ± 5.2 pg/ml around the third ventricle). This concentration gradient was measured in brain tissue collected at mid-day and at the end of the night. Nocturnal concentrations were higher than daytime concentrations, reflecting the diurnal variation in the pineal gland. The concentration gradient was not detected when MLT was delivered to the brain via the bloodstream. The diffusion of MLT to cerebral tissues via CSF was supported by in vivo scintigraphy and autoradiography. 2-[(123)I]-MLT infused into the CSF quickly and efficiently diffused into the brain tissues, whereas [(123)I]-iodine (control) was mostly washed away by the CSF flow and [(123)I]-bovine serum albumin remained mostly in the CSF. Taken together, these data support a critical role of CSF in providing the brain with MLT.


Subject(s)
Brain/metabolism , Melatonin/metabolism , Sheep/physiology , Animals , Blood-Brain Barrier , Female , Melatonin/blood , Melatonin/cerebrospinal fluid , Radionuclide Imaging
6.
Br J Pharmacol ; 158(5): 1248-62, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19814723

ABSTRACT

BACKGROUND AND PURPOSE: For many years, it was suspected that sheep expressed only one melatonin receptor (closely resembling MT(1) from other mammal species). Here we report the cloning of another melatonin receptor, MT(2), from sheep. EXPERIMENTAL APPROACH: Using a thermo-resistant reverse transcriptase and polymerase chain reaction primer set homologous to the bovine MT(2) mRNA sequence, we have cloned and characterized MT(2) receptors from sheep retina. KEY RESULTS: The ovine MT(2) receptor presents 96%, 72% and 67% identity with cattle, human and rat respectively. This MT(2) receptor stably expressed in CHO-K1 cells showed high-affinity 2[(125)I]-iodomelatonin binding (K(D)= 0.04 nM). The rank order of inhibition of 2[(125)I]-iodomelatonin binding by melatonin, 4-phenyl-2-propionamidotetralin and luzindole was similar to that exhibited by MT(2) receptors of other species (melatonin > 4-phenyl-2-propionamidotetralin > luzindole). However, its pharmacological profile was closer to that of rat, rather than human MT(2) receptors. Functionally, the ovine MT(2) receptors were coupled to G(i) proteins leading to inhibition of adenylyl cyclase, as the other melatonin receptors. In sheep brain, MT(2) mRNA was expressed in pars tuberalis, choroid plexus and retina, and moderately in mammillary bodies. Real-time polymerase chain reaction showed that in sheep pars tuberalis, premammillary hypothalamus and mammillary bodies, the temporal pattern of expression of MT(1) and MT(2) mRNA was not parallel in the three tissues. CONCLUSION AND IMPLICATIONS: Co-expression of MT(1) and MT(2) receptors in all analysed sheep brain tissues suggests that MT(2) receptors may participate in melatonin regulation of seasonal anovulatory activity in ewes by modulating MT(1) receptor action.


Subject(s)
Receptor, Melatonin, MT2/genetics , Amino Acid Sequence , Animals , Brain/metabolism , CHO Cells , Cattle , Cloning, Molecular , Cricetinae , Cricetulus , Female , GTP-Binding Proteins/metabolism , Humans , Molecular Sequence Data , Organ Specificity , RNA, Messenger/metabolism , Radioligand Assay , Rats , Receptor, Melatonin, MT1/antagonists & inhibitors , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/antagonists & inhibitors , Receptor, Melatonin, MT2/metabolism , Recombinant Proteins/metabolism , Retina/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Sheep , Tetrahydronaphthalenes/pharmacology , Tryptamines/pharmacology
7.
Br J Pharmacol ; 154(6): 1182-95, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18493248

ABSTRACT

Melatonin is a neurohormone that has been claimed to be involved in a wide range of physiological functions. Nevertheless, for most of its effects, the mechanism of action is not really known. In mammals, two melatonin receptors, MT1 and MT2, have been cloned. They belong to the G-protein-coupled receptor (GPCR) superfamily. They share some specific short amino-acid sequences, which suggest that they represent a specific subfamily. Another receptor from the same subfamily, the melatonin-related receptor has been cloned in different species including humans. This orphan receptor also named GPR50 does not bind melatonin and its endogenous ligand is still unknown. Nevertheless, this receptor has been shown to behave as an antagonist of the MT1 receptor, which opens new pharmacological perspectives for GPR50 despite the lack of endogenous or synthetic ligands. Moreover, MT1 and MT2 interact together through the formation of heterodimers at least in cells transfected with the cDNA of these two receptors. Lastly, signalling complexes associated with MT1 and MT2 receptors are starting to be deciphered. A third melatonin-binding site has been purified and characterized as the enzyme quinone reductase 2 (QR2). Inhibition of QR2 by melatonin may explain melatonin's protective effect that has been reported in different animal models and that is generally associated with its well-documented antioxidant properties.


Subject(s)
Receptors, Melatonin/drug effects , Receptors, Melatonin/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Animals , Binding Sites/drug effects , Dimerization , Humans , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Receptor, Melatonin, MT1/drug effects , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/drug effects , Receptor, Melatonin, MT2/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/physiology , Receptors, Melatonin/metabolism , Tissue Distribution
8.
Diabetologia ; 50(10): 2190-9, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17676309

ABSTRACT

AIMS/HYPOTHESIS: Uncoupling protein (UCP) 3 is a mitochondrial inner membrane protein expressed predominantly in glycolytic skeletal muscles. Its role in vivo remains poorly understood. The aim of the present work was to produce a mouse model with moderate overproduction and proper fibre-type distribution of UCP3. METHODS: Transgenic mice were created with a 16 kb region encompassing the human UCP3 gene. Mitochondrial uncoupling was investigated on permeabilised muscle fibres. Changes in body weight, adiposity and glucose or insulin tolerance were assessed in mice fed chow and high-fat diets. Indirect calorimetry was used to determine whole-body energy expenditure and substrate utilisation. RESULTS: Transgenic mice showed a twofold increase in UCP3 protein levels specifically in glycolytic muscles. Mitochondrial respiration revealed an increase of uncoupling in glycolytic but not in oxidative muscles. Transgenic mice gained less weight than wild-type littermates due to lower adipose tissue accretion when fed a high-fat diet. Animals showed a sexual dimorphism in metabolic responses. Female transgenic mice were more glucose-sensitive than wild-type animals, while male transgenic mice with high body weights had impaired glucose and insulin tolerance. Measurements of RQs in mice fed chow and high-fat diets suggested an impairment of metabolic flexibility in transgenic male mice. CONCLUSIONS/INTERPRETATION: Our data show that physiological overproduction of UCP3 in glycolytic muscles results in mitochondrial uncoupling, resistance to high-fat diet-induced obesity and sex specificity regarding insulin sensitivity and whole-body substrate utilisation.


Subject(s)
Blood Glucose/metabolism , Dietary Fats , Insulin Resistance , Ion Channels/genetics , Mitochondria, Muscle/physiology , Mitochondrial Proteins/genetics , Muscle, Skeletal/physiology , Sex Characteristics , Animals , Female , Gene Expression Regulation , Glycolysis , Male , Mice , Mice, Transgenic , RNA, Messenger/genetics , Uncoupling Protein 3
9.
Science ; 315(5813): 766; author reply 766, 2007 Feb 09.
Article in English | MEDLINE | ID: mdl-17289961

ABSTRACT

Zhang et al. (Research Articles, 11 November 2005, p. 996) reported that obestatin, a peptide derived from the ghrelin precursor, activated the orphan G protein-coupled receptor GPR39. However, we found that I125-obestatin does not bind GPR39 and observed no effects of obestatin on GPR39-transfected cells in various functional assays (cyclic adenosine monophosphate production, calcium mobilization, and GPR39 internalization). Our results indicate that obestatin is not the cognate ligand for GPR39.


Subject(s)
Peptide Hormones/metabolism , Receptors, G-Protein-Coupled/metabolism , Amino Acid Sequence , Animals , Base Sequence , CHO Cells , Calcium/metabolism , Cell Membrane/metabolism , Colforsin/pharmacology , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Ghrelin , Humans , Ligands , Molecular Sequence Data , Peptide Hormones/genetics , Peptide Hormones/pharmacology , Pituitary Gland/cytology , Pituitary Gland/metabolism , Protein Binding , Receptors, G-Protein-Coupled/genetics , Transfection
10.
Br J Pharmacol ; 150(1): 37-46, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17128289

ABSTRACT

BACKGROUND AND PURPOSE: Ivabradine, a specific and use-dependent I(f) inhibitor, exerts anti-ischaemic activity purely by reducing heart rate. The aim of this work was to characterize its effect on the predominant HCN channel isoform expressed in human sino-atrial nodes (hSAN), to determine its kinetics in HCN channels from multicellular preparations and rate-dependency of its action. EXPERIMENTAL APPROACH: RT-PCR analysis of the four HCN channel isoforms was carried out on RNAs from hSAN. Patch-clamp and intracellular recordings were obtained from CHO cells stably expressing hHCN4 and isolated SAN, respectively. Beating rate of rat isolated atria was followed using a transducer. KEY RESULTS: hHCN4 mRNAs were predominant in hSAN. Ivabradine induced a time-dependent inhibition of hHCN4 with an IC(50) of 0.5 microM. In rabbit SAN, ivabradine progressively reduced the frequency of action potentials: by 10% after 3 h at 0.1 microM, by 14% after 2 h at 0.3 microM and by 17% after 1.5 h at 1 microM. After 3h, ivabradine reduced the beating rate of rat right atria with an IC(30) of 0.2 microM. The onset of action of ivabradine was use-dependent rather than time-dependent with slower effects than caesium, an extracellular I (f) blocker. Ivabradine 3 microM decreased the frequency of action potentials in SAN from guinea-pig, rabbit and pig by 33%, 21% and 15% at 40 min, respectively. CONCLUSIONS AND IMPLICATIONS: The use-dependent inhibition of hHCN4 current by ivabradine probably contributes to its slow developing effect in isolated SAN and right atria and to its increased effectiveness in species with rapid SAN activity.


Subject(s)
Benzazepines/pharmacology , Biological Clocks/drug effects , Heart Rate/drug effects , Ion Channels/antagonists & inhibitors , Muscle Proteins/antagonists & inhibitors , Action Potentials/drug effects , Animals , CHO Cells , Cricetinae , Cricetulus , Cyclic Nucleotide-Gated Cation Channels , Female , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ion Channels/genetics , Ivabradine , Male , Muscle Proteins/genetics , Potassium Channels , RNA, Messenger/genetics , Rabbits , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Swine
11.
Biochimie ; 88(6): 737-46, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16808994

ABSTRACT

Stable expression of G protein coupled receptors in cell lines is a crucial tool for the characterization of the molecular pharmacology of receptors and the screening for new antagonists. However, in some instances, many difficulties have been encountered to obtain stable cell lines expressing functional receptors. Here, we addressed the question of vector optimization to establish cell lines expressing the human neuropeptide Y receptor 5 (NPY5-R) or histamine receptor 4 (HH4R). We have compared bicistronic vectors containing viral or cellular internal ribosome entry sites (IRES), co-expressing the receptor and the neomycine resistance gene from a single mRNA, to a bigenic vector containing two distinct promoters upstream each different genes. This study is the first one to validate the use of three cellular IRESs for long-term transgene expression. Our results demonstrate for both NPY5-R and HH4R that the bicistronic vectors with EMCV, VEGF, FGF1A or FGF2 IRES provide clones expressing functional receptors with yields between 25% and 100%. In contrast, the bigenic vector provided no functional clones, related to a low expression of NPY5R mRNA. The cell lines expressing active receptor were stable after more than 50 passages. These data indicate that IRES-based bicistronic vectors are particularly appropriate to establish cell clones expressing active G-coupled protein receptors with a high yield. In the case of NPY5, it was a new way to produce such a stable cell line. Furthermore, the characteristics-presented herein-of this receptor pharmacological property are perfectly in line with those reported in the literature.


Subject(s)
Genes/genetics , Genetic Vectors/genetics , Receptors, G-Protein-Coupled/biosynthesis , Receptors, G-Protein-Coupled/genetics , Receptors, Histamine/biosynthesis , Receptors, Histamine/genetics , Receptors, Neuropeptide Y/biosynthesis , Receptors, Neuropeptide Y/genetics , Gene Expression , Receptors, Histamine H4 , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
12.
Biochem Biophys Res Commun ; 337(2): 521-5, 2005 Nov 18.
Article in English | MEDLINE | ID: mdl-16198309

ABSTRACT

Since 15-deoxy-delta(12,14)-prostaglandin J(2) (15dPGJ(2)) has been identified as an endogenous ligand of PPARgamma thus inducing adipogenesis, it has been reported to play active parts in numerous cellular regulatory mechanisms. As 15dPGJ(2) has been shown to covalently bind several peptides and proteins, we investigated whether it also covalently binds PPARgamma. We first observed that after incubation of 15dPGJ(2) with recombinant PPARgamma, the quantity of free 15dPGJ(2) measured was always lower than the initial amount. We then measured the ability of the labeled agonist rosiglitazone to displace the complex PPARgamma(2)/15dPGJ(2) obtained after pre-incubation. We observed that the binding of rosiglitazone was dependent on the initial concentration of 15dPGJ(2). Finally using MALDI-TOF mass spectrometry analysis, after trypsinolysis of an incubate of the PPARgamma(2) ligand binding domain (GST-LBD) with 15dPGJ2, we found a fragment (m/z = 1314.699) corresponding to the addition of 15dPGJ(2) (m/z = 316.203) to the GST-LBD peptide (m/z = 998.481). All these observations demonstrate the existence of a covalent binding of 15dPGJ(2) to PPARgamma, which opens up new perspectives to study the molecular basis for selective activities of PPARs.


Subject(s)
Adipocytes/metabolism , PPAR gamma/metabolism , Prostaglandin D2/analogs & derivatives , Adipocytes/cytology , Hypoglycemic Agents/pharmacology , Ligands , PPAR gamma/chemistry , Prostaglandin D2/chemistry , Prostaglandin D2/metabolism , Protein Binding , Rosiglitazone , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Thiazolidinediones/pharmacology , Time Factors
13.
Diabetologia ; 48(3): 569-77, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15700135

ABSTRACT

AIMS/HYPOTHESIS: Autotaxin is a lysophospholipase D that is secreted by adipocytes and whose expression is substantially up-regulated in obese, diabetic db/db mice. The aim of the present study was to depict the physiopathological and cellular mechanisms involved in regulation of adipocyte autotaxin expression. METHODS: Autotaxin mRNAs were quantified in adipose tissue from db/db mice (obese and highly diabetic type 2), gold-thioglucose-treated (GTG) mice (highly obese and moderately diabetic type 2), high-fat diet-fed (HFD) mice (obese and moderately diabetic type 2), streptozotocin-treated mice (thin and diabetic type 1), and massively obese humans with glucose intolerance. RESULTS: When compared to non-obese controls, autotaxin expression in db/db mice was significantly increased, but not in GTG, HFD, or streptozotocin-treated mice. During db/db mice development, up-regulation of autotaxin occurred only 3 weeks after the emergence of hyperinsulinaemia, and simultaneously with the emergence of hyperglycaaemia. Adipocytes from db/db mice exhibited a stronger impairment of insulin-stimulated glucose uptake than non-obese and HFD-induced obese mice. Autotaxin expression was up-regulated by treatment with TNFalpha (insulin resistance-promoting cytokine), and down-regulated by rosiglitazone treatment (insulin-sensitising compound) in 3T3F442A adipocytes. Finally, adipose tissue autotaxin expression was significantly up-regulated in patients exhibiting both insulin resistance and impaired glucose tolerance. CONCLUSIONS/INTERPRETATION: The present work demonstrates the existence of a db/db-specific up-regulation of adipocyte autotaxin expression, which could be related to the severe type 2 diabetes phenotype and adipocyte insulin resistance, rather than excess adiposity in itself. It also showed that type 2 diabetes in humans is also associated with up-regulation of adipocyte autotaxin expression.


Subject(s)
Adipocytes/physiology , Diabetes Mellitus, Experimental/physiopathology , Gene Expression Regulation , Glucose-6-Phosphate Isomerase/genetics , Glycoproteins/genetics , Insulin Resistance/physiology , Multienzyme Complexes/genetics , Obesity/physiopathology , Phosphoric Diester Hydrolases/genetics , Adipocytes/enzymology , Animals , Biological Transport , Deoxyglucose/pharmacokinetics , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/physiopathology , Gene Expression Regulation, Enzymologic , Humans , Lipectomy , Mice , Mice, Inbred C57BL , Phosphodiesterase I , Pyrophosphatases
14.
Mini Rev Med Chem ; 4(3): 325-30, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15032678

ABSTRACT

5-HT(2) receptors mediate a large array of physiological and behavioral functions in humans via three distinct subtypes: 5-HT(2A), 5-HT(2B)and 5-HT(2C). While selective 5-HT(2A)antagonists have been known for some time, knowledge of the precise role played by the 5-HT(2B)receptor was hampered by the existence of solely 5-HT(2B)5-HT(2C) mixed antagonists. However, selective 5-HT(2B)antagonists began recently to emerge in the literature. Indeed, four structural classes belonging to the piperazine, indole, naphthylpyrimidine and tetrahydro-beta-carboline scaffolds were reported. In this paper, we will briefly review the structural and pharmacological features of selective 5-HT(2B) antagonists, including patent literature of the last five years.


Subject(s)
Drug Design , Serotonin 5-HT2 Receptor Antagonists , Serotonin Antagonists/therapeutic use , Animals , Binding, Competitive , Humans , Irritable Bowel Syndrome/drug therapy , Irritable Bowel Syndrome/metabolism , Ligands , Migraine Disorders/drug therapy , Migraine Disorders/metabolism , Molecular Structure , Serotonin Antagonists/chemistry
15.
Int J Obes Relat Metab Disord ; 28(4): 628-39, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14758341

ABSTRACT

AIM: These studies were performed to test the hypothesis that endogenous neuropeptide Y (NPY) acting on the NPY Y(5) receptor subtype contributes to the control of food intake. The hypothesis was tested using S 25585-a newly synthesized NPY Y(5) receptor antagonist. METHODS AND RESULTS: S 25585 was shown to be a high-affinity antagonist of the NPY Y(5) receptor subtype (IC(50) 5 nM) with no significant affinity toward other NPY receptor subtypes and over 40 other receptors, channels or uptake systems. S 25585 (7.5 mg/kg, i.p.) did not induce a conditioned taste aversion, significantly alter need-induced sodium appetite or induce pica, suggesting that at this dose the compound did not induce illness or malaise. In satiated rats, S 25585 (5.0 and 7.5 mg/kg, i.p.) significantly decreased the overfeeding induced by i.c.v. injection of NPY (1 microg) and the highly selective NPY Y(5) receptor agonist [hPP(1-17), Ala(31), Aib(32)]NPY (0.7 microg). In rats fasted for 4 h immediately before the dark phase, analysis of the microstructure of feeding behavior revealed that S 25585 significantly increased latency to eat and significantly decreased the duration and size of the meals without altering the meal number or eating rate. Analysis of the behavioral satiety sequence at this time revealed that the animals passed through the normal pattern of feeding, grooming and resting. Although S 25585 appeared to be influencing a physiological system controlling appetite, this does not involve the NPY Y(5) receptor since the antagonist also markedly reduced food intake in the NPY Y(5) knockout mouse. CONCLUSIONS: The results presented do not support a role for the NPY Y(5) receptor in the control of food intake. The results further illustrate that it is imperative that the activity of any new NPY Y(5) antagonist be assessed in the NPY Y(5) knockout mouse before assuming that its effect on food intake is due to blockade of this receptor.


Subject(s)
Eating/drug effects , Eating/physiology , Receptors, Neuropeptide Y/antagonists & inhibitors , Animals , Appetite/physiology , Conditioning, Psychological/physiology , Male , Mice , Mice, Knockout , Pica/physiopathology , Rats , Rats, Long-Evans , Rats, Wistar , Receptors, Neuropeptide Y/genetics , Receptors, Neuropeptide Y/physiology , Satiety Response/physiology , Sodium Chloride, Dietary/administration & dosage , Taste/physiology
16.
J Enzyme Inhib Med Chem ; 18(2): 119-25, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12943195

ABSTRACT

Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT) is the penultimate enzyme in melatonin (5-methoxy-N-acetyltryptamine) biosynthesis. It is the key-enzyme responsible of the nocturnal rhythm of melatonin production in the pineal gland. Specific AANAT inhibitors could be useful for treatment of different physiopathological disorders encountered in diseases such as seasonal affective disorders or obesity. On the basis of previous works and 3D-QSAR studies carried out in our laboratory, we have synthesized and evaluated four novel benzo[b]thiophene derivatives designed as AANAT inhibitors. Compound 13 exhibited high inhibitory activity (IC50 = 1.4 microM) and low affinities for both MT, (1100 nM) and MT2 (1400 nM) receptors.


Subject(s)
Arylamine N-Acetyltransferase/antagonists & inhibitors , Drug Design , Enzyme Inhibitors , Thiophenes , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Molecular Structure , Quantitative Structure-Activity Relationship , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , Thiophenes/chemical synthesis , Thiophenes/chemistry , Thiophenes/pharmacology
17.
J Neuroendocrinol ; 15(4): 442-8, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12622848

ABSTRACT

Melatonin is a neurohormone synthesized in the pineal gland during the dark period in all species, including humans. The diversity and differences in melatonin receptor distribution in the brain and extracerebral organs suggest multiple functional roles for melatonin. Administration of melatonin agonists reduces neophobia and treatment with a melatonin antagonist during the dark period reverses the anxiolytic-like effect of endogenous melatonin. Chronic treatment with agonists prevents various perturbations induced by chronic mild stress. Melatonin in vivo directly constricts cerebral arterioles in rats and decreases the lower limit of cerebral blood flow autoregulation, suggesting that melatonin may diminish the risk of hypoperfusion-induced cerebral ischemia. At the extracerebral level, melatonin regulates intestinal motility in rats. The intestinal postprandial motor response is shorter in the dark phase than in the light phase and this reduction is reversed in animals pretreated with a melatonin antagonist. Moreover, melatonin reduces the duration of cholecystokinin excitomotor effect. Endogenous melatonin may modulate intestinal motility to coordinate intestinal functions such as digestion and transit and control the metabolism of the animal. An adipocyte melatonin binding site may also participate in this control. Melatonin is involved in a wide range of physiological functions. The question remains as to whether evolution, adaptation and diurnal life have modified the physiological role of melatonin in humans. Moreover, the functional role of each of the receptor subtypes has to be characterized to design selective ligands to treat specific diseases.


Subject(s)
Circadian Rhythm/physiology , Melatonin/physiology , Melatonin/pharmacokinetics , Animals , Anxiety/metabolism , Body Weight/physiology , Brain/blood supply , Brain/metabolism , Cerebrovascular Circulation/physiology , Chronobiology Disorders/metabolism , Disease Models, Animal , Energy Metabolism/physiology , Gastrointestinal Motility/physiology , Melatonin/agonists , Melatonin/antagonists & inhibitors , Mice , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Cell Surface/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Melatonin
18.
Cell Mol Life Sci ; 59(8): 1395-405, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12363042

ABSTRACT

Current melatonin research is essentially based on the finding of new molecular tools, including synthetic or natural agonists and antagonists for the melatonin receptors and synthetic inhibitors of the enzymes involved in its biosynthesis. Indeed, the use of these compounds will improve our understanding of some of the numerous mechanisms of action of melatonin. The present report deals with the establishment and description of a new cell line expressing in a stable manner human arylalkylamine-N-acetyltransferase (AANAT, E.C.2.3.1.87). This new cellular system permits one to check the capacity of newly discovered inhibitors to penetrate the cell and reach their target. Some emphasis is put on inhibitors of the bromoacetyltryptamine family since these precursor compounds form in situ bisubstrate inhibitors with strong affinity for the human enzyme. AANAT is known to undergo complex and rapid regulation by a subtle balance between extremely fast catabolism and protection against it, both due to serine phosphorylation. In the present report, this phosphorylation is shown to occur in vitro after incubation with several kinases (rho-kinase, chk-1, protein kinase A) but not with protein kinase C. Phosphorylation enhances the specific activity of the enzyme by a factor of two to five. This phosphorylation is also shown to occur after treatment of the cell with compounds such as forskolin and rolipram that enhance or protect the intracellular pool of cAMP or the cell-permeable cAMP analogue, dioctanoyl-cAMP. The specificity of the cellular model was assessed using a series of substrates and inhibitors of AANAT already described in the literature, and the characteristics of this cellular system are shown to correspond with those reported for the purified enzyme. This cell line was used to screen libraries of compounds in a living system and led to the discovery of several potent specific and non-toxic AANAT inhibitors.


Subject(s)
Arylamine N-Acetyltransferase/genetics , CHO Cells/metabolism , 5-Methoxytryptamine/metabolism , Animals , Arylamine N-Acetyltransferase/antagonists & inhibitors , Arylamine N-Acetyltransferase/metabolism , Caco-2 Cells , Chromatography, High Pressure Liquid , Colforsin/metabolism , Cricetinae , Enzyme Inhibitors/pharmacology , Humans , Phenethylamines/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serotonin/metabolism , Tetradecanoylphorbol Acetate/metabolism , Transgenes , Tritium/metabolism
19.
Angiogenesis ; 5(3): 215-26, 2002.
Article in English | MEDLINE | ID: mdl-12831062

ABSTRACT

Matrix metalloproteinases (MMPs) constitute a large family of extracellular matrix degrading proteases implicated in a number of physiological and pathological processes, including angiogenesis. However, the relative importance of the individual MMPs in vessel formation is poorly understood. Using the three-dimensional rat aortic model, the role of the MMPs in angiogenesis in vitro was investigated both by the use of synthetic MMP inhibitors, and by a study of the expression of nine MMPs and three of their endogenous inhibitors (the TIMPs) during vessel formation. Inhibition of microvessel growth in this model by the MMP inhibitor Marimastat demonstrated the requirement of the MMPs for angiogenesis in both collagen and fibrin matrices (half-maximal inhibition at 5 and 80 nM, respectively). The profile of MMP expression was seen to be modified by both matrix composition and exogenous growth factors. For example, whilst the gelatinase MMP-2 and stromelysin MMP-3 were present at high levels in fibrin culture, the stromelysin MMP-11 and membrane-type-1-MMP were more highly expressed during vessel formation in collagen. The angiogenic basic fibroblast growth factor (bFGF) upregulated the expression of the gelatinases (MMP-2 and MMP-9), the stromelysins (MMP-3, MMP-10 and MMP-11) and the interstitial collagenase MMP-13, whereas vascular endothelial growth factor (VEGF) led to a marked increase in expression of MMP-2 only. Together, the environment-dependent upregulation in expression of a number of MMPs during angiogenesis, and the total inhibition of vessel growth observed at nanomolar concentrations of synthetic MMP inhibitors, suggests a major collective role of these enzymes in angiogenesis, and provides a basis for further development of MMP inhibitors for anti-angiogenic therapy.


Subject(s)
Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Neovascularization, Pathologic/pathology , Neovascularization, Physiologic/physiology , Animals , Aorta , Aorta, Thoracic/cytology , Base Sequence , Cells, Cultured , Collagen/physiology , DNA Primers , Extracellular Matrix/enzymology , Humans , Male , Muscle, Smooth, Vascular/cytology , Polymerase Chain Reaction , Rats , Rats, Inbred F344 , Tissue Inhibitor of Metalloproteinases/metabolism
20.
J Enzyme Inhib Med Chem ; 17(6): 409-14, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12683677

ABSTRACT

Serotonin N-acetyltransferase (arylalkylamine N-acetyl-transferase, AANAT) is an enzyme that catalyses the first rate limiting step in the biosynthesis of melatonin (5-methoxy-N-acetyltryptamine). Different physiopathological disorders in human may be due to abnormal secretion of melatonin leading to an inappropriate exposure of melatonin receptors to melatonin. For that reason, we have designed, synthesized and evaluated as inhibitors of human serotonin N-acetyltransferase, a series of compounds that were able to react with coenzyme A to give a bisubstrate analog inhibitor. Compound 12d was found to be a potent AANAT inhibitor (IC50 = 0.18 microM).


Subject(s)
Arylamine N-Acetyltransferase/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Databases, Factual , Enzyme Inhibitors/chemistry , Humans , Inhibitory Concentration 50 , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL