Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Ecology ; 104(2): e3908, 2023 02.
Article in English | MEDLINE | ID: mdl-36314902

ABSTRACT

Identifying the environmental drivers of variation in fitness-related traits is a central objective in ecology and evolutionary biology. Temporal fluctuations of these environmental drivers are often synchronized at large spatial scales. Yet, whether synchronous environmental conditions can generate spatial synchrony in fitness-related trait values (i.e., correlated temporal trait fluctuations across populations) is poorly understood. Using data from long-term monitored populations of blue tits (Cyanistes caeruleus, n = 31), great tits (Parus major, n = 35), and pied flycatchers (Ficedula hypoleuca, n = 20) across Europe, we assessed the influence of two local climatic variables (mean temperature and mean precipitation in February-May) on spatial synchrony in three fitness-related traits: laying date, clutch size, and fledgling number. We found a high degree of spatial synchrony in laying date but a lower degree in clutch size and fledgling number for each species. Temperature strongly influenced spatial synchrony in laying date for resident blue tits and great tits but not for migratory pied flycatchers. This is a relevant finding in the context of environmental impacts on populations because spatial synchrony in fitness-related trait values among populations may influence fluctuations in vital rates or population abundances. If environmentally induced spatial synchrony in fitness-related traits increases the spatial synchrony in vital rates or population abundances, this will ultimately increase the risk of extinction for populations and species. Assessing how environmental conditions influence spatiotemporal variation in trait values improves our mechanistic understanding of environmental impacts on populations.


Subject(s)
Passeriformes , Songbirds , Animals , Temperature , Seasons , Reproduction
2.
Nat Commun ; 13(1): 2112, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440555

ABSTRACT

The phenology of many species shows strong sensitivity to climate change; however, with few large scale intra-specific studies it is unclear how such sensitivity varies over a species' range. We document large intra-specific variation in phenological sensitivity to temperature using laying date information from 67 populations of two co-familial European songbirds, the great tit (Parus major) and blue tit (Cyanistes caeruleus), covering a large part of their breeding range. Populations inhabiting deciduous habitats showed stronger phenological sensitivity than those in evergreen and mixed habitats. However, populations with higher sensitivity tended to have experienced less rapid change in climate over the past decades, such that populations with high phenological sensitivity will not necessarily exhibit the strongest phenological advancement. Our results show that to effectively assess the impact of climate change on phenology across a species' range it will be necessary to account for intra-specific variation in phenological sensitivity, climate change exposure, and the ecological characteristics of a population.


Subject(s)
Passeriformes , Songbirds , Animals , Climate Change , Seasons , Temperature
3.
Ecol Evol ; 6(16): 5907-20, 2016 08.
Article in English | MEDLINE | ID: mdl-27547364

ABSTRACT

The increase in size of human populations in urban and agricultural areas has resulted in considerable habitat conversion globally. Such anthropogenic areas have specific environmental characteristics, which influence the physiology, life history, and population dynamics of plants and animals. For example, the date of bud burst is advanced in urban compared to nearby natural areas. In some birds, breeding success is determined by synchrony between timing of breeding and peak food abundance. Pertinently, caterpillars are an important food source for the nestlings of many bird species, and their abundance is influenced by environmental factors such as temperature and date of bud burst. Higher temperatures and advanced date of bud burst in urban areas could advance peak caterpillar abundance and thus affect breeding phenology of birds. In order to test whether laying date advance and clutch sizes decrease with the intensity of urbanization, we analyzed the timing of breeding and clutch size in relation to intensity of urbanization as a measure of human impact in 199 nest box plots across Europe, North Africa, and the Middle East (i.e., the Western Palearctic) for four species of hole-nesters: blue tits (Cyanistes caeruleus), great tits (Parus major), collared flycatchers (Ficedula albicollis), and pied flycatchers (Ficedula hypoleuca). Meanwhile, we estimated the intensity of urbanization as the density of buildings surrounding study plots measured on orthophotographs. For the four study species, the intensity of urbanization was not correlated with laying date. Clutch size in blue and great tits does not seem affected by the intensity of urbanization, while in collared and pied flycatchers it decreased with increasing intensity of urbanization. This is the first large-scale study showing a species-specific major correlation between intensity of urbanization and the ecology of breeding. The underlying mechanisms for the relationships between life history and urbanization remain to be determined. We propose that effects of food abundance or quality, temperature, noise, pollution, or disturbance by humans may on their own or in combination affect laying date and/or clutch size.

4.
Ecol Evol ; 4(18): 3583-95, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25478150

ABSTRACT

Nests are structures built to support and protect eggs and/or offspring from predators, parasites, and adverse weather conditions. Nests are mainly constructed prior to egg laying, meaning that parent birds must make decisions about nest site choice and nest building behavior before the start of egg-laying. Parent birds should be selected to choose nest sites and to build optimally sized nests, yet our current understanding of clutch size-nest size relationships is limited to small-scale studies performed over short time periods. Here, we quantified the relationship between clutch size and nest size, using an exhaustive database of 116 slope estimates based on 17,472 nests of 21 species of hole and non-hole-nesting birds. There was a significant, positive relationship between clutch size and the base area of the nest box or the nest, and this relationship did not differ significantly between open nesting and hole-nesting species. The slope of the relationship showed significant intraspecific and interspecific heterogeneity among four species of secondary hole-nesting species, but also among all 116 slope estimates. The estimated relationship between clutch size and nest box base area in study sites with more than a single size of nest box was not significantly different from the relationship using studies with only a single size of nest box. The slope of the relationship between clutch size and nest base area in different species of birds was significantly negatively related to minimum base area, and less so to maximum base area in a given study. These findings are consistent with the hypothesis that bird species have a general reaction norm reflecting the relationship between nest size and clutch size. Further, they suggest that scientists may influence the clutch size decisions of hole-nesting birds through the provisioning of nest boxes of varying sizes.

5.
Bull Entomol Res ; 103(4): 458-65, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23448302

ABSTRACT

Pesticide applications have a strong impact on biodiversity in agroecosystems. The present study aimed to assess the impact of pest control strategies on the arthropodofauna of Parus major nests built within nestboxes installed in orchards. Unlike many studied groups, these arthropod communities are not in direct contact with pesticide sprays (on account of their being sheltered by nestboxes) and are also unable to move away from the treated area. In this pilot study, we estimated the prevalence and the taxonomic and ecological diversities of arthropodofauna sampled in the nests and assessed the extent to which the whole and nest-specific arthropodofauna were affected by pest control strategies. Sixteen different insect and arachnid Primary Taxonomic Groups (PTGs, order level or below) were found in nests. The best represented PTGs (≥10% occurrence in years 2007 and 2008) were Psocoptera (Insecta, detritivorous/saprophagous), detritivorous/saprophagous Astigmata (Acari) and hematophagous Mesostigmata (Acari). Pest control strategies had a large impact on the prevalence of arthropods in nests, with higher proportions of nests hosting arthropods in organic orchards than in conventional orchards and with intermediate proportions in nests in Integrated Pest Management orchards. In contrast, pest control strategies had no significant effect on the composition of the arthropod communities when only nests hosting nidicolous arthropods were considered.


Subject(s)
Arthropods/physiology , Passeriformes/parasitology , Pest Control/methods , Pesticides/toxicity , Agriculture , Animals , Arthropods/drug effects , France , Housing, Animal , Malus , Pilot Projects , Population Dynamics , Pyrus , Species Specificity , Trees
6.
Environ Toxicol Chem ; 30(1): 212-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20928901

ABSTRACT

Birds are regarded as appropriate biological indicators of how changes in agricultural practices affect the environment. They are also involved in the biocontrol of pests. In the present study, we provide an assessment of the impact of pest control strategies on bird communities in apple orchards in southeastern France. We compared the structure (abundance, species richness, and diversity) of breeding bird communities in 15 orchards under conventional or organic pest control over a three-year period (2003-2005). Pest control strategies and their evolution over time were characterized by analyzing farmers' treatment schedules. The landscape surrounding the orchards was characterized using a Geographic Information System. We observed 30 bird species overall. Bird abundance, species richness, and diversity were all affected by pest control strategies, and were highest in organic orchards and lowest in conventional orchards during the three study years. The pest control strategy affected insectivores more than granivores. We further observed a tendency for bird communities in integrated pest management orchards to change over time and become increasingly different from communities in organic orchards, which also corresponded to changes in treatment schedules. These findings indicate that within-orchard bird communities may respond quickly to changes in pesticide use and may, in turn, influence biocontrol of pests by birds.


Subject(s)
Biodiversity , Birds/physiology , Environmental Pollutants/toxicity , Pest Control/methods , Pesticides/toxicity , Agriculture/methods , Animals , Birds/classification , Ecosystem , Environment , Environmental Monitoring , Feeding Behavior , France , Geographic Information Systems , Malus , Risk Assessment
7.
Naturwissenschaften ; 94(6): 449-58, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17297628

ABSTRACT

The behavioral and electroantennographic responses of Cydia pomonella (L.) to the ripe pear volatile ethyl (2E,4Z)-2,4-decadienoate (Et-E,Z-DD), were compared in insecticide-susceptible and -resistant populations originating from southern France. A dose-response relationship to this kairomonal attractant was established for antennal activity and did not reveal differences between susceptible and resistant strains. Conversely, males of the laboratory strains expressing metabolic [cytochrome P450-dependent mixed-function oxidases (mfo)] or physiological (kdr-type mutation of the sodium-channel gene) resistance mechanisms exhibited a significantly higher response to Et-E,Z-DD than those of the susceptible strain in a wind tunnel experiment. No response of the females to this kairomone could be obtained in our wind-tunnel conditions. In apple orchards, mfo-resistant male moths were captured at significantly higher rates in kairomone-baited traps than in traps baited with the sex pheromone of C. pomonella. Such a differential phenomenon was not verified for the kdr-resistant insects, which exhibited a similar response to both the sex pheromone and the kairomonal attractant in apple orchards. Considering the widespread distribution of metabolic resistance in European populations of C. pomonella and the enhanced behavioral response to Et-E,Z-DD in resistant moths, the development of control measures based on this kairomonal compound would be of great interest for the management of insecticide resistance in this species.


Subject(s)
Insecticide Resistance/physiology , Insecticides/toxicity , Moths/physiology , Pheromones/pharmacology , Animals , Behavior, Animal , Electric Stimulation , Flight, Animal , Genotype , Insecticide Resistance/drug effects , Moths/drug effects , Moths/genetics , Wind
8.
Pest Manag Sci ; 61(6): 549-54, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15657957

ABSTRACT

Populations of the codling moth, Cydia pomonella L (Lepidoptera, Tortricidae) have developed resistance to several classes of insecticide such as benzoylureas, juvenile hormone analogues, ecdysone agonists and pyrethroids, but the corresponding resistance mechanisms have not been extensively studied. Knockdown resistance (kdr) to pyrethroid insecticides has been associated with point mutations in the para sodium channel gene in a great variety of insect pest species. We have studied two susceptible strains (S and Sv) and two resistant strains (Rt and Rv) of C pomonella that exhibited 4- and 80-fold resistance ratios to deltamethrin, respectively. The region of the voltage-dependent sodium channel gene which includes the position where kdr and super-kdr mutations have been found in Musca domestica L was amplified. The kdr mutation, a leucine-to-phenylalanine replacement at position 1014, was found only in the Rv strain. In contrast, the super-kdr mutation, a methionine-to-threonine replacement at position 918, was not detected in any C pomonella strain. These data allowed us to develop a PCR-based diagnostic test (PASA) to monitor the frequency of the kdr mutation in natural populations of C pomonella in order to define appropriate insecticide treatments in orchards.


Subject(s)
Insecticide Resistance/genetics , Moths/genetics , Nitriles/pharmacology , Pyrethrins/pharmacology , Sodium Channels/genetics , Amino Acid Sequence , Animals , Base Sequence , Insecticides/pharmacology , Molecular Sequence Data , Mutation , Point Mutation , Sequence Alignment
9.
Environ Toxicol Chem ; 24(11): 2846-52, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16398122

ABSTRACT

The impact of conventional, organic, and integrated pest management (IPM) strategies of apple orchards on the reproduction of the great tit Parus major was investigated during a three-year period in southeastern France. The colonization process, egg-laying dates, clutch sizes, and fledging success were similar among pairs of P. major nesting in orchards conducted under the three studied management strategies. However, the mean number of young produced per ha (orchard productivity) was significantly higher in organic orchards than in both conventional and IPM orchards. Such divergences between both fledging success and orchard productivity primarily resulted from higher densities of P. major nesting pairs, but also from lower rates of nest abandonment during incubation in organic orchards. We suggest that intensive pesticide use under both IPM and conventional managements may have resulted in a substantial reduction in insect prey availability that enhanced intraspecific competition, which then led to failure in reproduction in pairs with low competitive ability. Our results highlight the relevance of P. major in assessing the environmental impact of apple orchard management strategies.


Subject(s)
Agriculture , Malus/drug effects , Passeriformes/physiology , Pest Control , Animals , Clutch Size , France , Malus/growth & development , Oviposition , Reproduction , Time Factors
10.
Pest Manag Sci ; 61(1): 53-67, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15593074

ABSTRACT

In the codling moth Cydia pomonella (L), insecticide resistance genes have been associated with pleiotropic effects affecting phenology. In this paper, we investigated whether an increase in the frequency of insecticide resistance in field populations of C pomonella was likely to entail significant divergences in the temporal occurrence of both susceptible and insecticide-resistant individuals. For this purpose, we built a phenological model that provided suitable predictions of the distinct and diverging seasonal evolutions of populations of a susceptible and two insecticide-resistant (at two and three loci) homozygous genotypes of C pomonella. Model simulations for each genotype were further compared with pheromone trap catches recorded in a field insecticide-treated population over an 8-year period (from 1992 to 2000), which reflected the progressive annual increase in the frequency of resistance in southeastern France. We found a significant delay in field adult emergence relative to those predicted by the homozygous susceptible model, and the magnitude of such a delay was positively correlated with increasing frequencies of insecticide resistance in the sampled field population of C pomonella. Adult emergence predicted in the theoretical population that was homozygous for resistance at two loci converged with those recorded in the field during the investigated 8-year period. This suggested that the pleiotropic effects of resistance were likely to result in a significant phenological segregation of insecticide-resistant alleles in the field. The results of this study emphasized the potential for pest populations exposed to chemical selection to evolve qualitatively with respect to phenology. This may raise critical questions regarding the use of phenological modelling as a forecasting tool for appropriate resistance management strategies that would take into account the diverging seasonal evolutions of both insecticide resistance and susceptibility.


Subject(s)
Insecticide Resistance/genetics , Moths/growth & development , Moths/genetics , Animals , Genotype , Hibernation , Insect Control , Larva/growth & development , Models, Biological , Seasons , Temperature , Time Factors
11.
Genet Res ; 81(3): 169-77, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12929908

ABSTRACT

Intrapopulation variability in the seasonal regulation of insect lifecycles has been shown to be due partly to genetic changes. Selection for insecticide resistance in the codling moth Cydia pomonella results from allelic substitution at two to three loci in south-eastern French populations of this species. However, such an adaptive process has been associated with an increased heterogeneity in the developmental responses to climatic factors such as temperature. In this paper, we investigate whether such pleiotropic effects of resistance on development induce a significant discrepancy in seasonal regulation in this species. The seasonal changes in a susceptible and two insecticide-resistant homozygous genotypes of C. pomonella, as well as their reciprocal F1 progeny, were followed under natural conditions during the reproductive season through the emergence events of adults, within-generation developmental rates and the number of generations. A significant delay in the occurrences of homozygous resistant genotypes resulted from significantly lower pre-imaginal developmental times relative to homozygous susceptible ones. Subsequent assessment of the number of generations indicated significantly higher diapause propensities in carriers of the resistance alleles (37.0-76.2%) than in susceptible homozygotes (6-7%), which mostly pupated towards a third generation of adults. In the light of these findings, pleiotropic effects of adaptive changes might be a crucial source of divergence in seasonal regulation at the population level, involving significant life-history trade-offs. In addition to man-made selective factors during the reproductive season, such an effect on the lifecycle could be a key component in the process of selection for resistance genes in south-eastern France C. pomonella populations.


Subject(s)
Moths/genetics , Selection, Genetic , Animals , Genetic Variation , Insecticide Resistance/genetics , Insecticide Resistance/physiology , Moths/growth & development , Moths/metabolism , Temperature
12.
Arch Insect Biochem Physiol ; 51(2): 55-66, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12232873

ABSTRACT

Insecticide resistance in the codling moth, Cydia pomonella, partly results from increased metabolic detoxification. The aim of this study was to follow the age variations in larval susceptibility to deltamethrin and teflubenzuron in one susceptible (S) strain, and two resistant (Rv and Rt) ones selected for resistance to deltamethrin and diflubenzuron, respectively. The age variation of the activities of cytochrome P450-dependent monooxygenase (MFO), glutathione S-transferases (GST), and esterases in S and both resistant strains were simultaneously investigated. The highest levels of insecticide resistance were recorded in late instars in both resistant strains, although Rv neonates exhibited enhanced resistance to deltamethrin. The involvement of an additional deltamethrin-specific mechanism of resistance, which could be mainly expressed in early instars, was supported by previous demonstration of a kdr point mutation in the Rv strain. The cross-resistance between deltamethrin and teflubenzuron indicated the involvement of non-specific metabolic pathways in resistance to teflubenzuron, rather than target site modification. A positive correlation between enhanced GST activities and deltamethrin resistance suggested that this mechanism might take place into the adaptive response of C. pomonella to pyrethroids treatments. Enhanced MFO activity was recorded in each instar of the two resistant strains compared to the susceptible one. But these activities were not correlated to the responses to deltamethrin nor to teflubenzuron. In the light of these findings, studying age-dependence of responses to selection is central to the implementation of monitoring tests of resistances, especially if the target instars are difficult to collect in the field.


Subject(s)
Benzamides/pharmacology , Insecticides/pharmacology , Juvenile Hormones/pharmacology , Moths/drug effects , Pyrethrins/pharmacology , Age Factors , Animals , Biological Assay , Cytochrome P-450 Enzyme System/metabolism , Esterases/metabolism , Glutathione Transferase/metabolism , Insecticide Resistance , Larva/drug effects , Larva/enzymology , Larva/growth & development , Moths/enzymology , Moths/growth & development , Nitriles
SELECTION OF CITATIONS
SEARCH DETAIL
...