Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Front Pharmacol ; 13: 1008976, 2022.
Article in English | MEDLINE | ID: mdl-37090899

ABSTRACT

Objective: Ulcerative colitis (UC) and Crohn's disease (CD) are two subtypes of chronic inflammatory bowel disease (IBD). Differential diagnosis remains a challenge. Anti-TNFα treatment is an important treatment for IBD, yet resistance frequently occurs and cannot be predicted. Consequently, many patients receive ineffective therapy with potentially adverse effects. Novel assays are needed to improve diagnosis, and predict and monitor response to anti-TNF-α compounds. Design: Signal transduction pathway (STP) technology was used to quantify activity of STPs (androgen and estrogen receptor, PI3K, MAPK, TGFß, Notch, Hedgehog, Wnt, NFκB, JAK-STAT1/2, and JAK-STAT3 pathways) in colon mucosa samples of CD and UC patients, based on transcriptome analysis. Previously described STP assay technology is based on computational inference of STP activity from mRNA levels of target genes of the STP transcription factor. Results: Results show that NFκB, JAK-STAT3, Wnt, MAPK, and androgen receptor pathways were abnormally active in CD and UC. Colon and ileum-localized CD differed with respect to STP activity, the JAK-STAT1/2 pathway being abnormally active in ileal CD. High activity of NFκB, JAK-STAT3, and TGFß pathways was associated with resistance to anti-TNFα treatment in UC and colon-located CD, but not in ileal CD. Abnormal STP activity decreased with successful treatment. Conclusion: We believe that measuring mucosal STP activity provides clinically relevant information to improve differential diagnosis of IBD and prediction of resistance to anti-TNFα treatment in patients with colon-localized IBD, and provides new targets for treatment and overcoming anti-TNFα resistance.

3.
Front Med (Lausanne) ; 8: 767145, 2021.
Article in English | MEDLINE | ID: mdl-34888328

ABSTRACT

Introduction: Sepsis is a life-threatening complication of a bacterial infection. It is hard to predict which patients with a bacterial infection will develop sepsis, and accurate and timely diagnosis as well as assessment of prognosis is difficult. Aside from antibiotics-based treatment of the causative infection and supportive measures, treatment options have remained limited. Better understanding of the immuno-pathophysiology of sepsis is expected to lead to improved diagnostic and therapeutic solutions. Functional activity of the innate (inflammatory) and adaptive immune response is controlled by a dedicated set of cellular signal transduction pathways, that are active in the various immune cell types. To develop an immune response-based diagnostic assay for sepsis and provide novel therapeutic targets, signal transduction pathway activities have been analyzed in whole blood samples from patients with sepsis. Methods: A validated and previously published set of signal transduction pathway (STP) assays, enabling determination of immune cell function, was used to analyze public Affymetrix expression microarray data from clinical studies containing data from pediatric and adult patients with sepsis. STP assays enable quantitative measurement of STP activity on individual patient sample data, and were used to calculate activity of androgen receptor (AR), estrogen receptor (ER), JAK-STAT1/2, JAK-STAT3, Notch, Hedgehog, TGFß, FOXO-PI3K, MAPK-AP1, and NFκB signal transduction pathways. Results: Activity of AR and TGFß pathways was increased in children and adults with sepsis. Using the mean plus two standard deviations of normal pathway activity (in healthy individuals) as threshold for abnormal STP activity, diagnostic assay parameters were determined. For diagnosis of pediatric sepsis, the AR pathway assay showed high sensitivity (77%) and specificity (97%), with a positive prediction value (PPV) of 99% and negative prediction value (NPV) of 50%. For prediction of favorable prognosis (survival), PPV was 95%, NPV was 21%. The TGFß pathway activity assay performed slightly less for diagnosing sepsis, with a sensitivity of 64% and specificity of 98% (PPV 99%, NPV 39%). Conclusion: The AR and TGFß pathways have an immunosuppressive role, suggesting a causal relation between increased pathway activity and sepsis immunopathology. STP assays have been converted to qPCR assays for further evaluation of clinical utility for sepsis diagnosis and prediction of prognosis, as well as for prediction of risk at developing sepsis in patients with a bacterial infection. STPs may present novel therapeutic targets in sepsis.

4.
Front Immunol ; 11: 575074, 2020.
Article in English | MEDLINE | ID: mdl-33193365

ABSTRACT

Combined cellular and humoral host immune response determine the clinical course of a viral infection and effectiveness of vaccination, but currently the cellular immune response cannot be measured on simple blood samples. As functional activity of immune cells is determined by coordinated activity of signaling pathways, we developed mRNA-based JAK-STAT signaling pathway activity assays to quantitatively measure the cellular immune response on Affymetrix expression microarray data of various types of blood samples from virally infected patients (influenza, RSV, dengue, yellow fever, rotavirus) or vaccinated individuals, and to determine vaccine immunogenicity. JAK-STAT1/2 pathway activity was increased in blood samples of patients with viral, but not bacterial, infection and was higher in influenza compared to RSV-infected patients, reflecting known differences in immunogenicity. High JAK-STAT3 pathway activity was associated with more severe RSV infection. In contrast to inactivated influenza virus vaccine, live yellow fever vaccine did induce JAK-STAT1/2 pathway activity in blood samples, indicating superior immunogenicity. Normal (healthy) JAK-STAT1/2 pathway activity was established, enabling assay interpretation without the need for a reference sample. The JAK-STAT pathway assays enable measurement of cellular immune response for prognosis, therapy stratification, vaccine development, and clinical testing.


Subject(s)
Dengue Virus/immunology , Immunity, Cellular , Orthomyxoviridae/immunology , Respiratory Syncytial Virus, Human/immunology , Rotavirus/immunology , Viral Vaccines/therapeutic use , Virus Diseases/immunology , Yellow fever virus/immunology , Biomarkers/blood , Dengue/blood , Dengue/immunology , Dengue/prevention & control , Dengue/virology , Dengue Vaccines/therapeutic use , Dengue Virus/pathogenicity , Diagnosis, Differential , Host-Pathogen Interactions , Humans , Immunogenicity, Vaccine , Influenza Vaccines/therapeutic use , Influenza, Human/blood , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Oligonucleotide Array Sequence Analysis , Orthomyxoviridae/pathogenicity , Predictive Value of Tests , RNA, Messenger/blood , RNA, Messenger/genetics , Respiratory Syncytial Virus Infections/blood , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/pathogenicity , Rotavirus/pathogenicity , Rotavirus Infections/blood , Rotavirus Infections/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Rotavirus Vaccines , Signal Transduction/genetics , Virus Diseases/blood , Virus Diseases/prevention & control , Virus Diseases/virology , Yellow Fever/blood , Yellow Fever/immunology , Yellow Fever/prevention & control , Yellow Fever/virology , Yellow Fever Vaccine/therapeutic use , Yellow fever virus/pathogenicity
5.
Eur J Cancer ; 49(13): 2851-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23664098

ABSTRACT

PURPOSE: To investigate whether F(ab')2-fragments of the monoclonal Insulin-like Growth Factor-1 Receptor (IGF-1R) antibody R1507 (F(ab')2-R1507) can successfully target IGF-1R in Ewing sarcomas (ES). MATERIALS AND METHODS: BALB/c nude mice were subcutaneously implanted with IGF-1R-expressing human ES xenografts (EW-5 and EW-8) which previously showed heterogeneous or no uptake of indium-111-labelled R1507 IgG ((111)In-R1507), respectively. Mice were injected with (111)In-F(ab')2-R1507 or (111)In-R1507 as a reference. Biodistribution and immuno-SPECT/computed tomography (CT) imaging studies were carried out 2, 4, 8 and 24 h post-injection (p.i.) for (111)In-F(ab')2-R1507 and 24 h p.i. for (111)In-R1507. RESULTS: Biodistribution studies showed specific accumulation of (111)In-F(ab')2-R1507 in EW-5 xenografts from t=2 h p.i. onwards (3.6 ± 0.2%ID/g at t = 24 h p.i.) and (111)In-F(ab')2-R1507 immuno-SPECT showed almost homogeneous intratumoural distribution at t=24h p.i. Tumour-to-blood ratios of (111)In-F(ab')2-R1507 were significantly higher than those of (111)In-R1507 at t=24 h p.i. (2.4 ± 0.4 versus 0.5 ± 0.1, respectively; p<0.05). More importantly, (111)In-F(ab')2-R1507 also specifically accumulated in EW-8 tumours (3.7 ± 0.7%ID/g at t = 24 h p.i). In both EW-5 and EW-8 tumours, there was a good spatial correlation between IGF-1R expression and (111)In-F(ab')2-R1507 tumour distribution. CONCLUSION: (111)In-F(ab')2-R1507 fragments can successfully target IGF-1R in ES models and have superior tumour penetrating and IGF-1R-targeting properties as compared to (111)In-R1507. This suggests that anti-IGF-1R therapies in ES and other tumours may be improved by using smaller therapeutic compounds, although further in vivo studies addressing this topic are warranted.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Bone Neoplasms/drug therapy , Immunoglobulin Fab Fragments/pharmacology , Receptor, IGF Type 1/immunology , Sarcoma, Ewing/drug therapy , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal, Humanized , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/immunology , Bone Neoplasms/metabolism , Female , Humans , Immunoglobulin Fab Fragments/administration & dosage , Immunoglobulin Fab Fragments/metabolism , Injections, Intravenous , Mice , Mice, Inbred BALB C , Mice, Nude , Sarcoma, Ewing/diagnostic imaging , Sarcoma, Ewing/immunology , Sarcoma, Ewing/metabolism , Tissue Distribution , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed , Xenograft Model Antitumor Assays
6.
Mol Pharm ; 9(8): 2314-21, 2012 Aug 06.
Article in English | MEDLINE | ID: mdl-22747077

ABSTRACT

The insulin-like growth factor 1 receptor (IGF-1R) is a potential new target for the treatment of breast cancer. Patients with breast cancer lesions that express IGF-1R may benefit from treatment with anti-IGF-1R antibodies. IGF-1R expression can be visualized using radiolabeled R1507, a monoclonal antibody directed against IGF-1R. However, antibodies clear slowly from the circulation, resulting in low tumor-to-background ratios early after injection. Therefore, we aimed to accelerate targeting of IGF-1R using radiolabeled R1507 F(ab')2 and Fab fragments. In vitro, immunoreactivity, binding affinity and internalization of R1507 IgG, F(ab')2 and Fab were determined using the triple negative IGF-1R-expressing breast cancer cell line SUM149. In vivo, pharmacokinetics of (111)In-labeled R1507 IgG, F(ab')2 and Fab were studied in mice bearing subcutaneous SUM149 xenografts. SPECT/CT images were acquired and the biodistribution was measured ex vivo. The in vitro binding characteristics of radiolabeled R1507 IgG and F(ab')2 were comparable, whereas the affinity of Fab fragments was significantly lower (Kd: 0.6 nM, 0.7 nM and 3.0 nM for R1507 IgG, F(ab')2 and Fab, respectively). Biodistribution studies showed that the maximum tumor uptake of (111)In-R1507 IgG, F(ab')2 and Fab was 31.8% ID/g (72 h p.i.), 10.0% ID/g (6 h p.i.), and 1.8% ID/g (1 h p.i.), respectively. However, maximal tumor-to-blood ratios for F(ab')2 (24 h p.i.: 7.5) were more than twice as high as those obtained with R1507 (72 h p.i.: 2.8) and Fab (6 h p.i.: 2.8). Injection of an excess of unlabeled R1507 significantly reduced tumor uptake, suggesting that the uptake of R1507 IgG and F(ab')2 was specific for IGF-1R, while the major fraction of the tumor uptake of Fab was nonspecific. IGF-1R-expressing xenografts were visualized with (111)In-F(ab')2 SPECT/CT as early as 6 h p.i., while with R1507 IgG, the tumor could be visualized after 24 h. No specific targeting was observed with (111)In-Fab. (111)In-F(ab')2 fragments showed improved targeting of IGF-1R expressing tumors. Tumor-to-blood ratios were twice as high as those obtained with (111)In-R1507, and adequate tumor targeting on SPECT/CT images was observed as early as 6 h p.i. For individualization and optimization of IGF-1R targeted therapy, (111)In-F(ab')2 may be the tracer of choice.


Subject(s)
Antibodies, Monoclonal/chemistry , Immunoglobulin Fab Fragments/chemistry , Tomography, Emission-Computed, Single-Photon/methods , Animals , Antibodies, Monoclonal, Humanized , Breast Neoplasms/diagnosis , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude
SELECTION OF CITATIONS
SEARCH DETAIL
...