Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 332
Filter
1.
Bone Rep ; 21: 101771, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38725879

ABSTRACT

Alzheimer's disease (AD) and osteoporosis often coexist in the elderly. Although observational studies suggest an association between these two diseases, the pathophysiologic link between AD and skeletal health has been poorly defined. We examined the skeletal phenotype of 5xFAD mice, an AD model with accelerated neuron-specific amyloid-ß accumulation causing full-blown AD phenotype by the age of 8 months. Micro-computed tomography indicated significantly lower trabecular and cortical bone parameters in 8-month-old male, but not female, 5xFAD mice than sex-matched wild-type littermates. Dynamic histomorphometry revealed reduced bone formation and increased bone resorption, and quantitative RT-PCR showed elevated skeletal RANKL gene expression in 5xFAD males. These mice also had diminished body fat percentage with unaltered lean mass, as determined by dual-energy X-ray absorptiometry (DXA), and elevated Ucp1 mRNA levels in brown adipose tissue, consistent with increased sympathetic tone, which may contribute to the osteopenia observed in 5xFAD males. Nevertheless, no significant changes could be detected between male 5xFAD and wild-type littermates regarding the serum and skeletal concentrations of norepinephrine. Thus, brain-specific amyloid-ß pathology is associated with osteopenia and appears to affect both bone formation and bone resorption. Our findings shed new light on the pathophysiologic link between Alzheimer's disease and osteoporosis.

2.
J Bone Miner Res ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709885

ABSTRACT

Osteoporosis and cardiovascular disease frequently occur together in older adults; however, a causal relationship between these two common conditions has not been established. By the time clinical cardiovascular disease develops, it is often too late to test whether vascular dysfunction developed before or after the onset of osteoporosis. Therefore, we assessed the association of vascular function, measured by tonometry and brachial hemodynamic testing, with bone density, microarchitecture, and strength, measured by high-resolution peripheral quantitative computed tomography (HR-pQCT), in 1391 individuals in the Framingham Heart Study. We hypothesized that decreased vascular function (pulse wave velocity, primary pressure wave, brachial pulse pressure, baseline flow amplitude and brachial flow velocity) contributes to deficits in bone density, microarchitecture and strength, particularly in cortical bone, which is less protected from excessive blood flow pulsatility than the trabecular compartment. We found that individuals with increased carotid-femoral pulse wave velocity had lower cortical volumetric bone mineral density (tibia: -0.21 [-0.26,-0.15] standardized beta [95% confidence interval], radius: -0.20 [-0.26,-0.15]), lower cortical thickness (tibia: -0.09 [-0.15,-0.04], radius: -0.07 [-0.12,-0.01]) and increased cortical porosity (tibia: 0.20 [0.15,0.25], radius: 0.21 [0.15,0.27]). However, these associations did not persist after adjustment for age, sex, height, and weight. These results suggest that vascular dysfunction with aging may not be an etiologic mechanism that contributes to the co-occurrence of osteoporosis and cardiovascular disease in older adults. Further study employing longitudinal measures of HR-pQCT parameters is needed to fully elucidate the link between vascular function and bone health.


Osteoporosis and heart disease are both medical conditions that commonly develop in older age. It is not known whether abnormal functioning of blood vessels contributes to the development of bone fragility with aging. In this study, we investigated the relationship between impaired blood vessel function and bone density and micro-structure in a group of 1391 people enrolled in the Framingham Heart Study. Blood vessel function was measured using specialized tools to assess blood flow and pressure. Bone density and micro-structure were measured using advanced imaging called high-resolution peripheral quantitative computed tomography (HR-pQCT). We found that people with impaired blood vessel function tended to have lower bone density and worse deterioration in bone micro-structure. However, once we statistically controlled for age and sex and other confounders, we did not find any association between blood vessel function and bone measures. Overall, our results showed that older adults with impaired blood vessel function do not exhibit greater deterioration in the skeleton.

3.
J Bone Miner Res ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691441

ABSTRACT

Some osteoporosis drug trials have suggested that treatment is more effective in those with low bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA). This study used data from a large set of randomised controlled trials (RCTs) to determine whether the anti-fracture efficacy of treatments differs according to baseline BMD. We used individual patient data from 25 RCTs (103 086 subjects) of osteoporosis medications collected as part of the FNIH-ASBMR SABRE project. Participants were stratified into femoral neck (FN) BMD T-score subgroups (≤ -2.5, > -2.5). We used Cox proportional hazard regression to estimate treatment effect for clinical fracture outcomes and logistic regression for the radiographic vertebral fracture outcome. We also performed analyses based on BMD quintiles. Overall, 42% had a FN BMD T-score ≤ -2.5. Treatment with anti-osteoporosis drugs led to significant reductions in fractures in both T-score ≤ -2.5 and > -2.5 subgroups. Compared to those with FN BMD T-score > -2.5, the risk reduction for each fracture outcome was greater in those with T-score ≤ -2.5, but only the all fracture outcome reached statistical significance (interaction p = 0.001). Results were similar when limited to bisphosphonate trials. In the quintile analysis, there was significant anti-fracture efficacy across all quintiles for vertebral fractures and with greater effects on fracture risk reduction for non-vertebral, all and all clinical fractures in the lower BMD quintiles (all interaction p ≤ 0.03). In summary, anti-osteoporotic medications reduced the risk of fractures regardless of baseline BMD. Significant fracture risk reduction with treatment for 4 of the 5 fracture endpoints was seen in participants with T-scores above -2.5, though effects tended to be larger and more significant in those with baseline T-scores <-2.5.


It is important to know whether our treatments for osteoporosis are effective at reducing the risk of fracture no matter what the bone mineral density (BMD) before starting treatment. This study used data from many clinical trials to determine whether the anti-fracture efficacy of treatments differs according to baseline BMD. We found that anti-osteoporotic medications reduced the risk of fractures regardless of baseline BMD, though effects tended to be larger and more significant in those with lower BMD scores.

5.
JBMR Plus ; 8(2): ziae003, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38505529

ABSTRACT

Diabetes, a disease marked by consistent high blood glucose levels, is associated with various complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Notably, skeletal fragility has emerged as a significant complication in both type 1 (T1D) and type 2 (T2D) diabetic patients. This review examines noninvasive imaging studies that evaluate skeletal outcomes in adults with T1D and T2D, emphasizing distinct skeletal phenotypes linked with each condition and pinpointing gaps in understanding bone health in diabetes. Although traditional DXA-BMD does not fully capture the increased fracture risk in diabetes, recent techniques such as quantitative computed tomography, peripheral quantitative computed tomography, high-resolution quantitative computed tomography, and MRI provide insights into 3D bone density, microstructure, and strength. Notably, existing studies present heterogeneous results possibly due to variations in design, outcome measures, and potential misclassification between T1D and T2D. Thus, the true nature of diabetic skeletal fragility is yet to be fully understood. As T1D and T2D are diverse conditions with heterogeneous subtypes, future research should delve deeper into skeletal fragility by diabetic phenotypes and focus on longitudinal studies in larger, diverse cohorts to elucidate the complex influence of T1D and T2D on bone health and fracture outcomes.

6.
J Bone Miner Res ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38501786

ABSTRACT

There is a common belief that antiosteoporosis medications are less effective in older adults. This study used data from randomized controlled trials (RCTs) to determine whether the anti-fracture efficacy of treatments and their effects on bone mineral density (BMD) differ in people ≥70 compared to those <70 years. We used individual patient data from 23 RCTs of osteoporosis medications collected as part of the FNIH-ASBMR SABRE project. We assessed the following fractures: radiographic vertebral, non-vertebral, hip, all clinical and all fractures. We used Cox proportional hazard regression to estimate treatment effect for clinical fracture outcomes, logistic regression for the radiographic vertebral fracture outcome and linear regression to estimate treatment effect on 24-month change in hip and spine BMD in each age subgroup. The analysis included 123,164 (99% female) participants; 43% being ≥ 70 years. Treatment with anti-osteoporosis drugs significantly and similarly reduced fractures in both subgroups [e.g. OR = 0.47 and 0.51 for vertebral fractures in those below and above 70 years, interaction p = 0.19; HR for all fractures: 0.72 vs 0.70, interaction p = 0.20)]. Results were similar when limited to bisphosphonate trials with the exception of hip fracture risk reduction which was somewhat greater in those <70 (HR = 0.44) vs ≥70 (HR = 0.79) years (interaction p = 0.02). Allocation to anti-osteoporotic drugs resulted in significantly greater increases in hip and spine BMD at 24 months in those >70 compared to those <70 years. In summary, anti-osteoporotic medications similarly reduced the risk of fractures regardless of age and the few small differences in fracture risk reduction by age were of uncertain clinical significance.


Medications used for osteoporosis maybe are less effective in older adults. This study used data from clinical trials to determine whether these medications work equally well in reducing the risk of fractures in people ≥70 compared to those <70 years. The analysis included 123,164 participants with data from 23 trials. Treatment with anti-osteoporosis drugs significantly reduced fractures in both groups in a similar way. The bone mineral density increased more in the older group.

7.
J Bone Miner Res ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38477737

ABSTRACT

Fracture risk increases with lower areal BMD (aBMD); however, aBMD-related estimate of risk may decrease with age. This may depend on technical limitations of 2-dimensional (2D) DXA which are reduced with 3D high-resolution peripheral quantitative computed tomography (HR-pQCT). Our aim was to examine whether the predictive utility of HR-pQCT measures with fracture varies with age. We analyzed associations of HR-pQCT measures at the distal radius and distal tibia with two outcomes: incident fractures and major osteoporotic fractures. We censored follow-up time at first fracture, death, last contact or 8 years after baseline. We estimated hazard ratios (HR) and 95%CI for the association between bone traits and fracture incidence across age quintiles. Among 6835 men and women (ages 40-96) with at least one valid baseline HR-pQCT scan who were followed prospectively for a median of 48.3 months, 681 sustained fractures. After adjustment for confounders, bone parameters at both the radius and tibia were associated with higher fracture risk. The estimated HRs for fracture did not vary significantly across age quintiles for any HR-pQCT parameter measured at either the radius or tibia. In this large cohort, the homogeneity of the associations between the HR-pQCT measures and fracture risk across age groups persisted for all fractures and for major osteoporotic fractures. The patterns were similar regardless of the HR-pQCT measure, the type of fracture, or the statistical models. The stability of the associations between HR-pQCT measures and fracture over a broad age range shows that bone deficits or low volumetric density remain major determinants of fracture risk regardless of age group. The lower risk for fractures across measures of aBMD in older adults in other studies may be related to factors which interfere with DXA but not with HR-pQCT measures.

8.
Physiol Rep ; 12(4): e15938, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38383049

ABSTRACT

With the technological advances made to expand space exploration, astronauts will spend extended amounts of time in space before returning to Earth. This situation of unloading and reloading influences human physiology, and readaptation to full weight-bearing may significantly impact astronauts' health. On Earth, similar situations can be observed in patients who are bedridden or suffer from sport-related injuries. However, our knowledge of male physiology far exceeds our knowledge of female's, which creates an important gap that needs to be addressed to understand the sex-based differences regarding musculoskeletal adaptation to unloading and reloading, necessary to preserve health of both sexes. Using a ground-based model of total unloading for 14 days and reloading at full weight-bearing for 7 days rats, we aimed to compare the musculoskeletal adaptations between males and females. Our results reveal the existence of significant differences. Indeed, males experienced bone loss both during the unloading and the reloading period while females did not. During simulated microgravity, males and females showed comparable muscle deconditioning with a significant decline in rear paw grip strength. However, after 7 days of recovery, muscle strength improved. Additionally, sex-based differences in myofiber size existing at baseline are significantly reduced or eliminated following unloading and recovery.


Subject(s)
Space Flight , Weightlessness , Rats , Humans , Male , Female , Animals , Hindlimb Suspension/physiology , Muscles , Weightlessness/adverse effects , Weight-Bearing/physiology , Muscle, Skeletal/physiology , Muscular Atrophy
9.
Invest Radiol ; 59(3): 259-270, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37725490

ABSTRACT

BACKGROUND: Loss of muscle mass is a known feature of sarcopenia and predicts poor clinical outcomes. Although muscle metrics can be derived from routine computed tomography (CT) images, sex-specific reference values at multiple vertebral levels over a wide age range are lacking. OBJECTIVE: The aim of this study was to provide reference values for skeletal muscle mass and attenuation on thoracic and abdominal CT scans in the community-based Framingham Heart Study cohort to aid in the identification of sarcopenia. MATERIALS AND METHODS: This secondary analysis of a prospective trial describes muscle metrics by age and sex for participants from the Framingham Heart Study without prior history of cancer who underwent at least 1 CT scan between 2002 and 2011. Using 2 previously validated machine learning algorithms followed by human quality assurance, skeletal muscle was analyzed on a single axial CT image per level at the 5th, 8th, 10th thoracic, and 3rd lumbar vertebral body (T5, T8, T10, L3). Cross-sectional muscle area (cm 2 ), mean skeletal muscle radioattenuation (SMRA, in Hounsfield units), skeletal muscle index (SMI, in cm 2 /m 2 ), and skeletal muscle gauge (SMRA·SMI) were calculated. Measurements were summarized by age group (<45, 45-54, 55-64, 65-74, ≥75 years), sex, and vertebral level. Models enabling the calculation of age-, sex-, and vertebral-level-specific reference values were created and embedded into an open access online Web application. RESULTS: The cohort consisted of 3804 participants (1917 [50.4%] males; mean age, 55.6 ± 11.8 years; range, 33-92 years) and 7162 CT scans. Muscle metrics qualitatively decreased with increasing age and female sex. CONCLUSIONS: This study established age- and sex-specific reference values for CT-based muscle metrics at thoracic and lumbar vertebral levels. These values may be used in future research investigating the role of muscle mass and attenuation in health and disease, and to identify sarcopenia.


Subject(s)
Sarcopenia , Male , Humans , Female , Adult , Middle Aged , Aged , Sarcopenia/diagnostic imaging , Sarcopenia/complications , Sarcopenia/pathology , Reference Values , Cross-Sectional Studies , Prospective Studies , Muscle, Skeletal/diagnostic imaging , Longitudinal Studies , Tomography, X-Ray Computed/methods , Retrospective Studies
10.
Osteoporos Int ; 35(2): 285-291, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37864596

ABSTRACT

To understand whether the bone loss which occurs after vertical sleeve gastrectomy increases the risk of fracture, we used an engineering model to estimate risk in participants before and after surgery. We found that estimated risk decreased 1 year after surgery and remained lower, though had rebounded, at year 2. PURPOSE: Vertical sleeve gastrectomy (VSG) improves metabolic health in young people with obesity but is accompanied by substantial loss of bone mass and estimated bone strength. We thus estimated fracture risk following VSG using the load-to-strength ratio (LSR), which integrates bone strength estimates with the predicted force of a fall. METHODS: Prospective 2-year study of youth ages 13-24 years with obesity undergoing VSG (n = 24) or lifestyle therapy (n = 34). We performed high-resolution peripheral quantitative computed tomography of the distal radius and microfinite element analysis to estimate bone strength and calculated LSR. RESULTS: VSG participants lost 26.4 ± 8.1% weight at year 1 (p < 0.001), which was sustained at year 2, while control participants gained weight at year 2 (4.5 ± 8.3%, p = 0.009). The predicted impact force decreased at years 1 and 2 following VSG (p < 0.001) but increased at year 2 among controls (p = 0.011). Estimated bone strength was unchanged at year 1 but decreased (p < 0.001) at year 2 following VSG, while bone strength did not change in controls. At year 1, the LSR decreased among VSG participants (p < 0.001), implying a lower risk of fracture. At year 2, the LSR was lower than baseline (p < 0.001), but higher compared to year 1 (p = 0.001). LSR did not change in the control group. CONCLUSIONS: Short-term estimated fracture risk at the radius following VSG decreases. However, ongoing bone loss despite stable weight between years 1 and 2 leads to a concerning rise in estimated fracture risk. Longer follow-up will be critical to evaluate the trajectory of fracture risk. (ClinicalTrials.gov NCT02557438, registered 9/23/2015).


Subject(s)
Fractures, Bone , Wrist Fractures , Wrist Injuries , Humans , Adolescent , Young Adult , Prospective Studies , Weight Loss , Obesity , Gastrectomy
11.
JBMR Plus ; 7(12): e10810, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38130751

ABSTRACT

Astronauts have an increased risk of back pain and disc herniation upon returning to Earth. Thus, it is imperative to understand the effects of spaceflight and readaptation to gravity on the musculoskeletal tissues of the spine. Here we investigated whether ~6 months of spaceflight led to regional differences in bone loss within the vertebral body. Additionally, we evaluated the relationships between vertebral bone density and paraspinal muscle morphology before flight, after flight, and after readaptation on Earth. We measured vertebral trabecular bone mineral density (Tb.BMD), paraspinal muscle cross-sectional area (CSA), and muscle density in 17 astronauts using computed tomography (CT) images of the lumbar spine obtained before flight (before flight, n = 17), after flight (spaceflight, n = 17), and ~12 months of readaptation to gravitational loading on Earth (follow-up, n = 15). Spaceflight-induced declines in Tb.BMD were greater in the superior region of the vertebral body (-6.7%) than the inferior (-3.1%, p = 0.052 versus superior region) and transverse regions (-4.3%, p = 0.057 versus superior region). After a year of readaptation to Earth's gravity, Tb.BMD in the transverse region remained significantly below preflight levels (-4.66%, p = 0.0094). Paraspinal muscle CSA and muscle density declined -1.0% (p = 0.005) and -0.83% (p = 0.001) per month of spaceflight, respectively. Ultimately, bone loss in the superior vertebral body, along with fatty infiltration of paraspinal muscles and incomplete recovery even after a year of readaptation on Earth, may contribute to spinal pathology in long-duration astronauts. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

12.
JBMR Plus ; 7(11): e10813, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38025039

ABSTRACT

Type 1 diabetes (T1D) confers an increased risk of fracture and is associated with lower bone mineral density (BMD) and altered microarchitecture compared with controls. Adequate calcium (Ca) intake promotes bone mineralization, thereby increasing BMD. The objective of this analysis was to evaluate the associations of total daily Ca intake with bone outcomes among youth with T1D. This was a cross-sectional analysis of girls ages 10-16 years with (n = 62) and without (n = 60) T1D. We measured Ca intake with a validated food-frequency questionnaire and BMD, microarchitecture, and strength estimates with dual-energy X-ray absorptiometry and high-resolution peripheral quantitative computed tomography. Total daily Ca intake did not differ between groups (950 ± 488 in T1D versus 862 ± 461 mg/d in controls, p = 0.306). Serum 25OHD was lower in T1D (26.3 ± 7.6 versus 32.6 ± 9.0 ng/mL, p = <0.001), and parathyroid hormone (PTH) was higher in T1D (38.9 ± 11 versus 33.4 ± 9.7 pg/mL, p = 0.004). Trabecular volumetric BMD and thickness at the tibia were lower in T1D (p = 0.013, p = 0.030). Ca intake correlated with trabecular BMD at the radius and tibia among T1D participants (ß = 0.27, p = 0.047, and ß = 0.28, p = 0.027, ß = 0.28, respectively) but not among controls (pinteraction = 0.009 at the radius, pinteraction = 0.010 at the tibia). Similarly, Ca intake was associated with estimated failure load at the tibia in T1D but not control participants (p = 0.038, ß = 0.18; pinteraction = 0.051). We observed the expected negative association of Ca intake with parathyroid hormone in controls (p = 0.022, ß = -0.29) but not in T1D participants (pinteraction = 0.022). Average glycemia as measured by hemoglobin A1c did not influence the relationship of Ca and PTH among participants with T1D (pinteraction = 0.138). These data suggest that youth with T1D may be particularly vulnerable to dietary Ca insufficiency. Increasing Ca intake may be an effective strategy to optimize bone health in this population. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

13.
J Biomech ; 161: 111821, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37805384

ABSTRACT

Musculoskeletal models are commonly used to estimate in vivo spinal loads under various loading conditions. Typically, participant-specific measured kinematics (PSMK) are coupled with participant-specific models, but obtaining PSMK data can be costly and infeasible in large studies or clinical practice. Thus, we evaluated two alternative methods to estimate spinal loads without PSMK: 1) ensemble average kinematics (EAK) based on kinematics from all participants; and 2) using separately measured individual kinematics (SMIK) from multiple other participants as inputs, then averaging the resulting loads. This study compares the dynamic spine loading patterns and peak loads in older adults performing five lifting tasks using PSMK, EAK and SMIK. Median root mean square errors of EAK and SMIK methods versus PSMK ranged from 18 to 72% body weight for compressive loads and from 2 to 25% body weight for shear loads, with median cross-correlations ranging from 0.931 to 0.991. The root mean square errors and cross-correlations between repeated PSMK trials fell within similar ranges. Compressive peak loads evaluated by EAK and SMIK were not different than PSMK in 12 of 15 cases, while by comparison repeated PSMK trials were not different in 13 of 15 cases. Overall, the resulting spine loading magnitudes and profiles using EAK or SMIK were not notably different than using a PSMK approach, and differences were not greater than between two PSMK trials. Thus, these findings indicate that these approaches may be used to make reasonable estimates of dynamic spinal loading without direct measurement of participant kinematics.


Subject(s)
Lumbar Vertebrae , Spine , Humans , Aged , Biomechanical Phenomena , Kinetics , Pressure , Body Weight , Weight-Bearing
14.
Front Clin Diabetes Healthc ; 4: 1272804, 2023.
Article in English | MEDLINE | ID: mdl-37867730

ABSTRACT

Over 1 million Americans are currently living with T1D and improvements in diabetes management have increased the number of adults with T1D living into later decades of life. This growing population of older adults with diabetes is more susceptible to aging comorbidities, including both vascular disease and osteoporosis. Indeed, adults with T1D have a 2- to 3- fold higher risk of any fracture and up to 7-fold higher risk of hip fracture compared to those without diabetes. Recently, diabetes-related vascular deficits have emerged as potential risks factors for impaired bone blood flow and poor bone health and it has been hypothesized that there is a direct pathophysiologic link between vascular disease and skeletal outcomes in T1D. Indeed, microvascular disease (MVD), one of the most serious consequences of diabetes, has been linked to worse bone microarchitecture in older adults with T1D compared to their counterparts without MVD. The association between the presence of microvascular complications and compromised bone microarchitecture indicates the potential direct deleterious effect of vascular compromise, leading to abnormal skeletal blood flow, altered bone remodeling, and deficits in bone structure. In addition, vascular diabetic complications are characterized by increased vascular calcification, decreased arterial distensibility, and vascular remodeling with increased arterial stiffness and thickness of the vessel walls. These extensive alterations in vascular structure lead to impaired myogenic control and reduced nitric-oxide mediated vasodilation, compromising regulation of blood flow across almost all vascular beds and significantly restricting skeletal muscle blood flow seen in those with T1D. Vascular deficits in T1D may very well extend to bone, compromising skeletal blood flow control, and resulting in reduced blood flow to bone, thus negatively impacting bone health. Indeed, several animal and ex vivo human studies report that diabetes induces microvascular damage within bone are strongly correlated with diabetes disease severity and duration. In this review article, we will discuss the contribution of diabetes-induced vascular deficits to bone density, bone microarchitecture, and bone blood flow regulation, and review the potential contribution of vascular disease to skeletal fragility in T1D.

15.
Front Endocrinol (Lausanne) ; 14: 1237727, 2023.
Article in English | MEDLINE | ID: mdl-37810879

ABSTRACT

The gut microbiome affects the inflammatory environment through effects on T-cells, which influence the production of immune mediators and inflammatory cytokines that stimulate osteoclastogenesis and bone loss in mice. However, there are few large human studies of the gut microbiome and skeletal health. We investigated the association between the human gut microbiome and high resolution peripheral quantitative computed tomography (HR-pQCT) scans of the radius and tibia in two large cohorts; Framingham Heart Study (FHS [n=1227, age range: 32 - 89]), and the Osteoporosis in Men Study (MrOS [n=836, age range: 78 - 98]). Stool samples from study participants underwent amplification and sequencing of the V4 hypervariable region of the 16S rRNA gene. The resulting 16S rRNA sequencing data were processed separately for each cohort, with the DADA2 pipeline incorporated in the16S bioBakery workflow. Resulting amplicon sequence variants were assigned taxonomies using the SILVA reference database. Controlling for multiple covariates, we tested for associations between microbial taxa abundances and HR-pQCT measures using general linear models as implemented in microbiome multivariable association with linear model (MaAslin2). Abundance of 37 microbial genera in FHS, and 4 genera in MrOS, were associated with various skeletal measures (false discovery rate [FDR] ≤ 0.1) including the association of DTU089 with bone measures, which was independently replicated in the two cohorts. A meta-analysis of the taxa-bone associations further revealed (FDR ≤ 0.25) that greater abundances of the genera; Akkermansia and DTU089, were associated with lower radius total vBMD, and tibia cortical vBMD respectively. Conversely, higher abundances of the genera; Lachnospiraceae NK4A136 group, and Faecalibacterium were associated with greater tibia cortical vBMD. We also investigated functional capabilities of microbial taxa by testing for associations between predicted (based on 16S rRNA amplicon sequence data) metabolic pathways abundance and bone phenotypes in each cohort. While there were no concordant functional associations observed in both cohorts, a meta-analysis revealed 8 pathways including the super-pathway of histidine, purine, and pyrimidine biosynthesis, associated with bone measures of the tibia cortical compartment. In conclusion, our findings suggest that there is a link between the gut microbiome and skeletal metabolism.


Subject(s)
Bone Density , Gastrointestinal Microbiome , Adult , Aged , Aged, 80 and over , Humans , Male , Middle Aged , Bone and Bones , Bone Density/genetics , Cohort Studies , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics
16.
JCI Insight ; 8(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37870958

ABSTRACT

Osteocytes express parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptors and respond to the PTHrP analog abaloparatide (ABL) and to the PTH 1-34 fragment teriparatide (TPTD), which are used to treat osteoporosis. Several studies indicate overlapping but distinct skeletal responses to ABL or TPTD, but their effects on cortical bone may differ. Little is known about their differential effects on osteocytes. We compared cortical osteocyte and skeletal responses to ABL and TPTD in sham-operated and ovariectomized mice. Administered 7 weeks after ovariectomy for 4 weeks at a dose of 40 µg/kg/d, TPTD and ABL had similar effects on trabecular bone, but ABL showed stronger effects in cortical bone. In cortical osteocytes, both treatments decreased lacunar area, reflecting altered peri-lacunar remodeling favoring matrix accumulation. Osteocyte RNA-Seq revealed that several genes and pathways were altered by ovariectomy and affected similarly by TPTD and ABL. Notwithstanding, several signaling pathways were uniquely regulated by ABL. Thus, in mice, TPTD and ABL induced a positive osteocyte peri-lacunar remodeling balance, but ABL induced stronger cortical responses and affected the osteocyte transcriptome differently. We concluded that ABL affected the cortical osteocyte transcriptome in a manner subtly different from TPTD, resulting in more beneficial remodeling/modeling changes and homeostasis of the cortex.


Subject(s)
Parathyroid Hormone-Related Protein , Teriparatide , Female , Mice , Animals , Teriparatide/pharmacology , Teriparatide/therapeutic use , Parathyroid Hormone-Related Protein/pharmacology , Parathyroid Hormone-Related Protein/metabolism , Osteocytes/metabolism , Transcriptome , Estrogens/pharmacology
17.
Eur J Endocrinol ; 189(3): 346-354, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37633255

ABSTRACT

OBJECTIVE: To determine mechanisms contributing to impaired bone health in youth 24 months following sleeve gastrectomy (SG). DESIGN: Twenty-four-month longitudinal observational study. METHODS: Participants included 23 youth undergoing SG and 30 non-surgical controls (NS) 13-25 years old with moderate-to-severe obesity. Subjects underwent fasting labs for bone turnover markers (N-terminal propeptide of type 1 procollagen, C-telopeptide (CTX)), sex hormones, sex hormone binding globulin (SHBG), and enteric peptides, DXA for areal bone mineral density (aBMD) and body composition, high-resolution peripheral quantitative CT for volumetric BMD (vBMD) at the distal radius and tibia, and microfinite element analysis for strength estimates. RESULTS: Groups did not differ for mean age or BMI z-scores. Over 24 months, compared to NS, SG had greater reductions in BMI z-scores, and spine, hip, and femoral neck aBMD Z-scores (P ≤ .012), greater increases in serum CTX and SHBG (P ≤ .039), and greater decreases in estrone and ghrelin (P ≤ .021). Among females, estrone and free androgen index (FAI) decreased (P ≤ .022) in SG vs NS groups. After controlling for age and sex, decreases in BMI and lean mass were associated with decreases in total hip and femoral neck aBMD Z-scores, and decreases in radial total and trabecular vBMD and failure load, and tibial total and trabecular vBMD. Among females, after controlling for age, decreases in estrone were associated with decreases in spine aBMD Z-scores and radial total and trabecular vBMD, and decrease in FAI with decreases in radial failure load. CONCLUSION: Reductions in BMI, lean mass, and sex steroids over 24 months post-SG are associated with bone loss and could be targeted for preventative or therapeutic interventions. Clinical trial registration number: The study is registered in ClinicalTrials.gov (NCT02557438).


Subject(s)
Estrone , Spine , Female , Adolescent , Humans , Young Adult , Adult , Bone Density , Body Composition , Gastrectomy
18.
Article in English | MEDLINE | ID: mdl-37516980

ABSTRACT

The purpose of this study was to develop a machine learning model to reconstruct time series kinematic and kinetic profiles of the ankle and knee joint across six different tasks using an ankle-mounted IMU. Four male collegiate basketball players performed repeated tasks, including walking, jogging, running, sidestep cutting, max-height jumping, and stop-jumping, resulting in a total of 102 movements. Ankle and knee flexion-extension angles and moments were estimated using motion capture and inverse dynamics and considered 'actual data' for the purpose of model fitting. Synchronous acceleration and angular velocity data were collected from right ankle-mounted IMUs. A time-series feature extraction model was used to determine a set of features used as input to a random forest regression model to predict the ankle and knee kinematics and kinetics. Five-fold cross-validation was performed to verify the model accuracy, and statistical parametric mapping was used to determine the difference between the predicted and experimental time series. The random forest regression model predicted the time-series profiles of the ankle and knee flexion-extension angles and moments with high accuracy (Kinematics: R2 ranged from 0.782 to 0.962, RMSE ranged from 2.19° to 11.58°; Kinetics: R2 ranged from 0.711 to 0.966, RMSE ranged from 0.10 Nm/kg to 0.41 Nm/kg). There were differences between predicted and actual time series for the knee flexion-extension moment during stop-jumping and walking. An appropriately trained feature-based regression model can predict time series knee and ankle joint angles and moments across a wide range of tasks using a single ankle-mounted IMU.

19.
J Biomech ; 157: 111710, 2023 08.
Article in English | MEDLINE | ID: mdl-37437459

ABSTRACT

Trunk muscle size and location relative to the spine are key factors affecting their capacity to assist in trunk movement, strength, and function. There remains limited information on how age, weight and height affect these measurements across multiple spinal levels, and prior studies had limited samples in terms of size and ethnicity. In this study, we measured trunk muscles in coronal plane slices at T4 - L4 of CT scans acquired in 507 participants, aged 40-90 years, from the community-based Framingham Heart Study. Mixed-effects linear regressions, stratified by sex, determined the contributions of age, height and weight, to muscle cross-sectional area (CSA), the distance from the vertebral body centroid (CD), and the in-plane angle of the line between the vertebral body and the muscle centroids (CA). Muscle CSA decreased with higher age by an average of -0.8% per year, but weight (average 0.8% per kg) and height (average -0.05% per cm) had mixed results, with both positive and negative effects depending on muscle group and level. Muscle CD increased with weight by an average of 0.3% per kg, but had mixed effects for age (average 0.8% per year) and height (average 0.1% per cm). Muscle CA had mixed associations with age (average 0.05% per year), weight (average 0.01% per kg) and height (average -0.05% per cm). A prediction program created with these results provides a simple approach for estimating probable values for trunk muscle size and position in the absence of medical imaging.


Subject(s)
Muscle, Skeletal , Spine , Male , Middle Aged , Humans , Female , Aged , Muscle, Skeletal/physiology , Spine/diagnostic imaging , Spine/physiology , Torso , Tomography, X-Ray Computed , Linear Models
20.
Radiology ; 307(5): e223256, 2023 06.
Article in English | MEDLINE | ID: mdl-37310246

ABSTRACT

Background Sleeve gastrectomy (SG) is effective in the treatment of cardiometabolic complications of obesity but is associated with bone loss. Purpose To determine the long-term effects of SG on vertebral bone strength, density, and bone marrow adipose tissue (BMAT) in adolescents and young adults with obesity. Materials and Methods This 2-year prospective nonrandomized longitudinal study enrolled adolescents and young adults with obesity who underwent either SG (SG group) or dietary and exercise counseling without surgery (control group) at an academic medical center from 2015 to 2020. Participants underwent quantitative CT of the lumbar spine (L1 and L2 levels) to assess bone density and strength, proton MR spectroscopy to assess BMAT (L1 and L2 levels), and MRI of the abdomen and thigh to assess body composition. Student t and Wilcoxon signed-rank tests were used to compare 24-month changes between and within groups. Regression analysis was performed to evaluate associations between body composition, vertebral bone density, strength, and BMAT. Results A total of 25 participants underwent SG (mean age, 18 years ± 2 [SD], 20 female), and 29 underwent dietary and exercise counseling without surgery (mean age, 18 years ± 3, 21 female). Body mass index (BMI) decreased by a mean of 11.9 kg/m2 ± 5.21 [SD] after 24 months in the SG group (P < .001), while it increased in the control group (mean increase, 1.49 kg/m2 ± 3.10; P = .02). Mean bone strength of the lumbar spine decreased after surgery compared with that in control subjects (mean decrease, -728 N ± 691 vs -7.24 N ± 775; P < .001). BMAT of the lumbar spine increased after SG (mean lipid-to-water ratio increase, 0.10 ± 0.13; P = .001). Changes in vertebral density and strength correlated positively with changes in BMI and body composition (R = 0.34 to R = 0.65, P = .02 to P < .001) and inversely with vertebral BMAT (R = -0.33 to R = -0.47, P = .03 to P = .001). Conclusion SG in adolescents and young adults reduced vertebral bone strength and density and increased BMAT compared with those in control participants. Clinical trial registration no. NCT02557438 © RSNA, 2023 See also the editorial by Link and Schafer in this issue.


Subject(s)
Pediatric Obesity , Adolescent , Young Adult , Female , Humans , Longitudinal Studies , Prospective Studies , Gastrectomy , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Proton Magnetic Resonance Spectroscopy , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...