Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Brain Commun ; 6(5): fcae292, 2024.
Article in English | MEDLINE | ID: mdl-39291169

ABSTRACT

One of the most prominent symptoms in multiple sclerosis is pathological fatigue, often described by sufferers as one of the most debilitating symptoms, affecting quality of life and employment. However, the mechanisms of both, physical and cognitive fatigue in multiple sclerosis remain elusive. Here, we use behavioural tasks and quantitative MRI to investigate the neural correlates of interoception (the ability to sense internal bodily signals) and metacognition (the ability of the brain to assess its own performance), in modulating cognitive fatigue. Assuming that structural damage caused by multiple sclerosis pathology might impair the neural pathways subtending interoception and/or metacognition, we considered three alternative hypotheses to explain fatigue as a consequence of, respectively: (i) reduced interoceptive accuracy, (ii) reduced interoceptive insight or (iii) reduced global metacognition. We then explored associations between these behavioural measures and white matter microstructure, assessed by diffusion and magnetisation transfer MRI. Seventy-one relapsing-remitting multiple sclerosis patients participated in this cross-sectional study (mean age 43, 62% female). Patient outcomes relevant for fatigue were measured, including disability, disease duration, depression, anxiety, sleepiness, cognitive function, disease modifying treatment and quality of life. Interoceptive and metacognitive parameters were measured using heartbeat tracking and discrimination tasks, and metacognitive visual and memory tasks. MRI was performed in 69 participants, including diffusion tensor MRI, neurite orientation dispersion and density imaging and quantitative magnetisation transfer. Associations between interoception and metacognition and the odds of high cognitive fatigue were tested by unconditional binomial logistic regression. The odds of cognitive fatigue were higher in the people with low interoceptive insight (P = 0.03), while no significant relationships were found between fatigue and other interoceptive or metacognitive parameters, suggesting a specific impairment in interoceptive metacognition, rather than interoception generally, or metacognition generally. Diffusion MRI-derived fractional anisotropy and neurite density index showed significant (P < 0.05) negative associations with cognitive fatigue in a widespread bilateral white matter network. Moreover, there was a significant (P < 0.05) interaction between cognitive fatigue and interoceptive insight, suggesting that the poorer the white matter structure, the lower the interoceptive insight, and the worse the fatigue. The results point towards metacognitive impairment confined to the interoceptive domain, in relapsing-remitting patients with cognitive fatigue. The neural basis of this impairment is supported by a widespread white matter network in which loss of neurite density plays a role.

3.
Brain Commun ; 5(5): fcad224, 2023.
Article in English | MEDLINE | ID: mdl-37705680

ABSTRACT

Many people with Tourette syndrome are able to volitionally suppress tics, under certain circumstances. To understand better the neural mechanisms that underlie this ability, we used functional magnetic resonance neuroimaging to track regional brain activity during performance of an intentional inhibition task. On some trials, Tourette syndrome and comparison participants internally chose to make or withhold a motor action (a button press), while on other trials, they followed 'Go' and 'NoGo' instructions to make or withhold the same action. Using representational similarity analysis, a functional magnetic resonance neuroimaging multivariate pattern analysis technique, we assessed how Tourette syndrome and comparison participants differed in neural activity when choosing to make or to withhold an action, relative to externally cued responses on Go and NoGo trials. Analyses were pre-registered, and the data and code are publicly available. We considered similarity of action representations within regions implicated as critical to motor action release or inhibition and to symptom expression in Tourette syndrome, namely the pre-supplementary motor area, inferior frontal gyrus, insula, caudate nucleus and primary motor cortex. Strikingly, in the Tourette syndrome compared to the comparison group, neural activity within the pre-supplementary motor area displayed greater representational similarity across all action types. Within the pre-supplementary motor area, there was lower response-specific differentiation of activity relating to action and inhibition plans and to internally chosen and externally cued actions, implicating the region as a functional nexus in the symptomatology of Tourette syndrome. Correspondingly, patients with Tourette syndrome may experience volitional tic suppression as an effortful and tiring process because, at the top of the putative motor decision hierarchy, activity within the population of neurons facilitating action is overly similar to activity within the population of neurons promoting inhibition. However, not all pre-supplementary motor area group differences survived correction for multiple comparisons. Group differences in representational similarity were also present in the primary motor cortex. Here, representations of internally chosen and externally cued inhibition were more differentiated in the Tourette syndrome group than in the comparison group, potentially a consequence of a weaker voluntary capacity earlier in the motor hierarchy to suppress actions proactively. Tic severity and premonitory sensations correlated with primary motor cortex and caudate nucleus representational similarity, but these effects did not survive correction for multiple comparisons. In summary, more rigid pre-supplementary motor area neural coding across action categories may constitute a central feature of Tourette syndrome, which can account for patients' experience of 'unvoluntary' tics and effortful tic suppression.

4.
Cancers (Basel) ; 15(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37173965

ABSTRACT

The aim of this work was to extend the VERDICT-MRI framework for modelling brain tumours, enabling comprehensive characterisation of both intra- and peritumoural areas with a particular focus on cellular and vascular features. Diffusion MRI data were acquired with multiple b-values (ranging from 50 to 3500 s/mm2), diffusion times, and echo times in 21 patients with brain tumours of different types and with a wide range of cellular and vascular features. We fitted a selection of diffusion models that resulted from the combination of different types of intracellular, extracellular, and vascular compartments to the signal. We compared the models using criteria for parsimony while aiming at good characterisation of all of the key histological brain tumour components. Finally, we evaluated the parameters of the best-performing model in the differentiation of tumour histotypes, using ADC (Apparent Diffusion Coefficient) as a clinical standard reference, and compared them to histopathology and relevant perfusion MRI metrics. The best-performing model for VERDICT in brain tumours was a three-compartment model accounting for anisotropically hindered and isotropically restricted diffusion and isotropic pseudo-diffusion. VERDICT metrics were compatible with the histological appearance of low-grade gliomas and metastases and reflected differences found by histopathology between multiple biopsy samples within tumours. The comparison between histotypes showed that both the intracellular and vascular fractions tended to be higher in tumours with high cellularity (glioblastoma and metastasis), and quantitative analysis showed a trend toward higher values of the intracellular fraction (fic) within the tumour core with increasing glioma grade. We also observed a trend towards a higher free water fraction in vasogenic oedemas around metastases compared to infiltrative oedemas around glioblastomas and WHO 3 gliomas as well as the periphery of low-grade gliomas. In conclusion, we developed and evaluated a multi-compartment diffusion MRI model for brain tumours based on the VERDICT framework, which showed agreement between non-invasive microstructural estimates and histology and encouraging trends for the differentiation of tumour types and sub-regions.

5.
MAGMA ; 34(4): 499-511, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33315165

ABSTRACT

OBJECTIVE: The reproducibility of Neurite orientation dispersion and density imaging (NODDI) metrics from time-saving multiband (MB) EPI compared with singleband (SB) has not been considered. This study aims to evaluate the reproducibility of NODDI parameters from SB and MB acquisitions, determine the agreement between acquisitions and estimate the sample sizes required to detect between-group change. METHODS: Brain diffusion MRI data were acquired using SB and MB (acceleration factors 2 (MB2) and 3 (MB3)) on 8 healthy subjects on 2 separate visits. NODDI maps of isotropic volume fraction (FISO), neurite density (NDI) and orientation dispersion index (ODI) were estimated. Region-of-interest analysis was performed; variability across subjects and visits was measured using coefficients of variation (CoV). Intraclass correlation coefficient and Bland-Altman analysis were performed to assess reproducibility and detect any systematic bias between SB, MB2 and MB3. Power calculations were used to determine sample sizes required to detect group differences. RESULTS: Both NDI and ODI were reproducible between visits; however, FISO was variable. All parameters were not reproducible across methods; a systematic bias was observed with the derived values decreasing as the MB factor increases. The number of subjects needed to detect a between-group change is not significantly different between methods; however, ODI needs considerably higher sample sizes than NDI. CONCLUSIONS: Both SB and MB yield highly reproducible NDI and ODI measures, but direct comparison of these parameters between methods is complicated by systematic differences that exist between the two approaches.


Subject(s)
Diffusion Magnetic Resonance Imaging , Neurites , Adult , Cerebrospinal Fluid/diagnostic imaging , Female , Humans , Male , Reproducibility of Results , Sample Size , Young Adult
6.
Brain Commun ; 2(2): fcaa199, 2020.
Article in English | MEDLINE | ID: mdl-33409490

ABSTRACT

Tourette syndrome is characterized by 'unvoluntary' tics, which are compulsive, yet often temporarily suppressible. The inferior frontal gyrus is implicated in motor control, including inhibition of pre-potent actions through influences on downstream subcortical and motor regions. Although tic suppression in Tourette syndrome also engages the inferior frontal gyrus, it is unclear whether such prefrontal control of action is also dysfunctional: Tic suppression studies do not permit comparison with control groups, and neuroimaging studies of motor inhibition can be confounded by the concurrent expression or suppression of tics. Here, patients with Tourette syndrome were directly compared to control participants when performing an intentional inhibition task during functional MRI. Tic expression was recorded throughout for removal from statistical models. Participants were instructed to make a button press in response to Go cues, withhold responses to NoGo cues, and decide whether to press or withhold to 'Choose' cues. Overall performance was similar between groups, for both intentional inhibition rates (% Choose-Go) and reactive NoGo inhibition commission errors. A subliminal face prime elicited no additional effects on intentional or reactive inhibition. Across participants, the task activated prefrontal and motor cortices and subcortical nuclei, including pre-supplementary motor area, inferior frontal gyrus, insula, caudate nucleus, thalamus and primary motor cortex. In Tourette syndrome, activity was elevated in the inferior frontal gyrus, insula and basal ganglia, most notably within the right inferior frontal gyrus during voluntary action and inhibition (Choose-Go and Choose-NoGo), and reactive inhibition (NoGo-correct). Anatomically, the locus of this inferior frontal gyrus hyperactivation during control of voluntary action matched that previously reported for tic suppression. In Tourette syndrome, activity within the caudate nucleus was also enhanced during both intentional (Choose-NoGo) and reactive (NoGo-correct) inhibition. Strikingly, despite the absence of overt motor behaviour, primary motor cortex activity increased in patients with Tourette syndrome but decreased in controls during both reactive and intentional inhibition. Additionally, severity of premonitory sensations scaled with functional connectivity of the pre-supplementary motor area to the caudate nucleus, globus pallidus and thalamus when choosing to respond (Choose-Go). Together, these results suggest that patients with Tourette syndrome use equivalent prefrontal mechanisms to suppress tics and withhold non-tic actions, but require greater inferior frontal gyrus engagement than controls to overcome motor drive from hyperactive downstream regions, notably primary motor cortex. Moreover, premonitory sensations may cue midline motor regions to generate tics through interactions with the basal ganglia.

7.
Brain ; 141(11): 3249-3261, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30346484

ABSTRACT

Tourette syndrome is a neurodevelopmental disorder, characterized by motor and phonic tics. Tics are typically experienced as avolitional, compulsive, and associated with premonitory urges. They are exacerbated by stress and can be triggered by external stimuli, including social cues like the actions and facial expressions of others. Importantly, emotional social stimuli, with angry facial stimuli potentially the most potent social threat cue, also trigger behavioural reactions in healthy individuals, suggesting that such mechanisms may be particularly sensitive in people with Tourette syndrome. Twenty-one participants with Tourette syndrome and 21 healthy controls underwent functional MRI while viewing faces wearing either neutral or angry expressions to quantify group differences in neural activity associated with processing social information. Simultaneous video recordings of participants during neuroimaging enabled us to model confounding effects of tics on task-related responses to the processing of faces. In both Tourette syndrome and control participants, face stimuli evoked enhanced activation within canonical face perception regions, including the occipital face area and fusiform face area. However, the Tourette syndrome group showed additional responses within the anterior insula to both neutral and angry faces. Functional connectivity during face viewing was then examined in a series of psychophysiological interactions. In participants with Tourette syndrome, the insula showed functional connectivity with a set of cortical regions previously implicated in tic generation: the presupplementary motor area, premotor cortex, primary motor cortex, and the putamen. Furthermore, insula functional connectivity with the globus pallidus and thalamus varied in proportion to tic severity, while supplementary motor area connectivity varied in proportion to premonitory sensations, with insula connectivity to these regions increasing to a greater extent in patients with worse symptom severity. In addition, the occipital face area showed increased functional connectivity in Tourette syndrome participants with posterior cortical regions, including primary somatosensory cortex, and occipital face area connectivity with primary somatosensory and primary motor cortices varied in proportion to tic severity. There were no significant psychophysiological interactions in controls. These findings highlight a potential mechanism in Tourette syndrome through which heightened representation within insular cortex of embodied affective social information may impact the reactivity of subcortical motor pathways, supporting programmed motor actions that are causally implicated in tic generation. Medicinal and psychological therapies that focus on reducing insular hyper-reactivity to social stimuli may have potential benefit for tic reduction in people with Tourette syndrome.


Subject(s)
Brain/diagnostic imaging , Facial Recognition/physiology , Motor Cortex/diagnostic imaging , Tourette Syndrome/pathology , Tourette Syndrome/physiopathology , Adolescent , Adult , Brain/pathology , Brain Mapping , Female , Humans , Image Processing, Computer-Assisted , Linear Models , Magnetic Resonance Imaging , Male , Middle Aged , Oxygen/blood , Psychophysiology , Tourette Syndrome/diagnostic imaging , Young Adult
8.
Neuroimage ; 182: 117-127, 2018 11 15.
Article in English | MEDLINE | ID: mdl-29097317

ABSTRACT

The MRI signal is dependent upon a number of sub-voxel properties of tissue, which makes it potentially able to detect changes occurring at a scale much smaller than the image resolution. This "microstructural imaging" has become one of the main branches of quantitative MRI. Despite the exciting promise of unique insight beyond the resolution of the acquired images, its widespread application is limited by the relatively modest ability of each microstructural imaging technique to distinguish between differing microscopic substrates. This is mainly due to the fact that MRI provides a very indirect measure of the tissue properties in which we are interested. A strategy to overcome this limitation lies in the combination of more than one technique, to exploit the relative contributions of differing physiological and pathological substrates to selected MRI contrasts. This forms the basis of multi-modal MRI, a broad concept that refers to many different ways of effectively combining information from more than one MRI contrast. This paper will review a range of methods that have been proposed to maximise the output of this combination, primarily falling into one of two approaches. The first one relies on data-driven methods, exploiting multivariate analysis tools able to capture overlapping and complementary information. The second approach, which we call "model-driven", aims at combining parameters extracted by existing biophysical or signal models to obtain new parameters, which are believed to be more accurate or more specific than the original ones. This paper will attempt to provide an overview of the advantages and limitations of these two philosophies.


Subject(s)
Brain/anatomy & histology , Brain/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Models, Theoretical , Multimodal Imaging/methods , Neuroimaging/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL